login
A097193
G.f. A(x) satisfies A097191(x*A(x)) = A(x) and so equals the ratio of the g.f.s of any two adjacent diagonals of triangle A097190.
5
1, 12, 204, 3978, 83538, 1837836, 41745132, 970574319, 22970258883, 551286213192, 13381219902024, 327839887599588, 8095123378420596, 201221638263597672, 5030540956589941800, 126392341534322287725
OFFSET
0,2
LINKS
FORMULA
G.f.: A(x) = (1-(1-27*x)^(1/9))/(3*x).
G.f.: A(x) = (1/x)*(series reversion of x/A097191(x)).
a(n) = A097192(n)/(n+1).
a(n) ~ 27^n / (Gamma(8/9) * n^(10/9)). - Vaclav Kotesovec, Feb 12 2014
MAPLE
seq(coeff(series((1-(1-27*x)^(1/9))/(3*x), x, n+2), x, n), n = 0 ..20); # G. C. Greubel, Sep 17 2019
MATHEMATICA
CoefficientList[Series[(1-(1-27*x)^(1/9))/(3*x), {x, 0, 20}], x] (* Vaclav Kotesovec, Feb 12 2014 *)
PROG
(PARI) a(n)=polcoeff((1-(1-27*x+x^2*O(x^n))^(1/9))/(3*x), n, x)
(Magma) R<x>:=PowerSeriesRing(Rationals(), 20); Coefficients(R!( (1-(1-27*x)^(1/9))/(3*x) )); // G. C. Greubel, Sep 17 2019
(Sage)
def A097193_list(prec):
P.<x> = PowerSeriesRing(QQ, prec)
return P((1-(1-27*x)^(1/9))/(3*x)).list()
A097193_list(20) # G. C. Greubel, Sep 17 2019
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Aug 03 2004
STATUS
approved