|
|
A097193
|
|
G.f. A(x) satisfies A097191(x*A(x)) = A(x) and so equals the ratio of the g.f.s of any two adjacent diagonals of triangle A097190.
|
|
5
|
|
|
1, 12, 204, 3978, 83538, 1837836, 41745132, 970574319, 22970258883, 551286213192, 13381219902024, 327839887599588, 8095123378420596, 201221638263597672, 5030540956589941800, 126392341534322287725
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,2
|
|
LINKS
|
|
|
FORMULA
|
G.f.: A(x) = (1-(1-27*x)^(1/9))/(3*x).
G.f.: A(x) = (1/x)*(series reversion of x/A097191(x)).
|
|
MAPLE
|
seq(coeff(series((1-(1-27*x)^(1/9))/(3*x), x, n+2), x, n), n = 0 ..20); # G. C. Greubel, Sep 17 2019
|
|
MATHEMATICA
|
CoefficientList[Series[(1-(1-27*x)^(1/9))/(3*x), {x, 0, 20}], x] (* Vaclav Kotesovec, Feb 12 2014 *)
|
|
PROG
|
(PARI) a(n)=polcoeff((1-(1-27*x+x^2*O(x^n))^(1/9))/(3*x), n, x)
(Magma) R<x>:=PowerSeriesRing(Rationals(), 20); Coefficients(R!( (1-(1-27*x)^(1/9))/(3*x) )); // G. C. Greubel, Sep 17 2019
(Sage)
P.<x> = PowerSeriesRing(QQ, prec)
return P((1-(1-27*x)^(1/9))/(3*x)).list()
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|