login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A051688
a(n) = (5*n+7)(!^5)/7(!^5), related to A034323 ((5*n+2)(!^5) quintic, or 5-factorials).
4
1, 12, 204, 4488, 121176, 3877632, 143472384, 6025840128, 283214486016, 14727153272832, 839447736551424, 52045759666188288, 3487065897634615296, 251068744629692301312, 19332293336486307201024
OFFSET
0,2
COMMENTS
Row m=7 of the array A(6; m,n) := ((5*n+m)(!^5))/m(!^5), m >= 0, n >= 0.
LINKS
FORMULA
a(n) = ((5*n+7)(!^5))/7(!^5) = A034323(n+2)/7.
E.g.f.: 1/(1-5*x)^(12/5).
MATHEMATICA
s=1; lst={s}; Do[s+=n*s; AppendTo[lst, s], {n, 11, 5!, 5}]; lst (* Vladimir Joseph Stephan Orlovsky, Nov 08 2008 *)
With[{nn = 30}, CoefficientList[Series[1/(1 - 5*x)^(12/5), {x, 0, nn}], x]*Range[0, nn]!] (* G. C. Greubel, Aug 15 2018 *)
PROG
(PARI) x='x+O('x^30); Vec(serlaplace(1/(1-5*x)^(12/5))) \\ G. C. Greubel, Aug 15 2018
(Magma) m:=30; R<x>:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!(1/(1-5*x)^(12/5))); [Factorial(n-1)*b[n]: n in [1..m]]; // G. C. Greubel, Aug 15 2018
CROSSREFS
Cf. A052562, A008548(n+1), A034323(n+1), A034300(n+1), A034301(n+1), A034325(n+1), A051687-A051691 (rows m=0..10).
Sequence in context: A357568 A108020 A097193 * A198529 A372616 A151590
KEYWORD
easy,nonn
STATUS
approved