login
A051689
a(n) = (5*n+8)(!^5)/8(!^5), related to A034300 ((5*n+3)(!^5) quintic, or 5-factorials).
3
1, 13, 234, 5382, 150696, 4972968, 188972784, 8125829712, 390039826176, 20672110787328, 1198982425665024, 75535892816896512, 5136440711548962816, 374960171943074285568, 29246893411559794274304
OFFSET
0,2
COMMENTS
Row m=8 of the array A(6; m,n) := ((5*n+m)(!^5))/m(!^5), m >= 0, n >= 0.
LINKS
FORMULA
a(n) = ((5*n+8)(!^5))/8(!^5) = A034300(n+2)/8.
E.g.f.: 1/(1-5*x)^(13/5).
MATHEMATICA
s=1; lst={s}; Do[s+=n*s; AppendTo[lst, s], {n, 12, 5!, 5}]; lst (* Vladimir Joseph Stephan Orlovsky, Nov 08 2008 *)
With[{nn = 30}, CoefficientList[Series[1/(1 - 5*x)^(13/5), {x, 0, nn}], x]*Range[0, nn]!] (* G. C. Greubel, Aug 15 2018 *)
PROG
(PARI) x='x+O('x^30); Vec(serlaplace(1/(1-5*x)^(13/5))) \\ G. C. Greubel, Aug 15 2018
(Magma) m:=30; R<x>:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!(1/(1-5*x)^(13/5))); [Factorial(n-1)*b[n]: n in [1..m]]; // G. C. Greubel, Aug 15 2018
CROSSREFS
Cf. A052562, A008548(n+1), A034323(n+1), A034300(n+1), A034301(n+1), A034325(n+1), A051687-A051691 (rows m=0..10).
Sequence in context: A142610 A218202 A134493 * A000824 A229384 A181035
KEYWORD
easy,nonn
STATUS
approved