login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A034301
a(n) = n-th quintic factorial number divided by 4.
15
1, 9, 126, 2394, 57456, 1666224, 56651616, 2209413024, 97214173056, 4763494479744, 257228701906176, 15176493412464384, 971295578397720576, 67019394909442719744, 4959435223298761261056, 391795382640602139623424, 32910812141810579728367616, 2929062280621141595824717824
OFFSET
1,2
LINKS
FORMULA
a(n) = A008546(n)/4.
4*a(n) = (5*n-1)(!^5) = Product_{j=1..n} (5*j-1).
a(n) = (5*n)!/(5^n*n!*A008548(n)*2*A034323(n)*3*A034300(n)).
E.g.f.: (-1 + (1-5*x)^(-4/5))/4, a(0) = 0.
a(n) ~ sqrt(2*Pi) * 5/(4*Gamma(4/5)) * n^(13/10) * (5*n/e)^n * (1 + (241/300)/n + ...). - Joe Keane (jgk(AT)jgk.org), Nov 24 2001
D-finite with recurrence: a(n) +(-5*n+1)*a(n-1)=0. - R. J. Mathar, Feb 20 2020
Sum_{n>=1} 1/a(n) = 4*(e/5)^(1/5)*(Gamma(4/5) - Gamma(4/5, 1/5)). - Amiram Eldar, Dec 19 2022
MAPLE
a:= n-> mul(5*k-1, k=1..n)/4: seq(a(n), n=1..20); # G. C. Greubel, Aug 23 2019
MATHEMATICA
Table[-5^(n+1)*Pochhammer[-1/5, n+1]/4, {n, 20}] (* G. C. Greubel, Aug 23 2019 *)
PROG
(PARI) a(n) = prod(k=1, n, 5*k-1)/4;
vector(20, n, a(n)) \\ G. C. Greubel, Aug 23 2019
(Magma) [&*[5*k-1: k in [1..n]]/4: n in [1..20]]; // G. C. Greubel, Aug 23 2019
(Sage) [-5^(n+1)*rising_factorial(-1/5, n+1)/4 for n in (1..20)] # G. C. Greubel, Aug 23 2019
(GAP) List([1..20], n-> Product([1..n], k-> 5*k-1)/4 ); # G. C. Greubel, Aug 23 2019
CROSSREFS
KEYWORD
easy,nonn
EXTENSIONS
Terms a(17) onward added by G. C. Greubel, Aug 23 2019
STATUS
approved