login
A034301
a(n) = n-th quintic factorial number divided by 4.
15
1, 9, 126, 2394, 57456, 1666224, 56651616, 2209413024, 97214173056, 4763494479744, 257228701906176, 15176493412464384, 971295578397720576, 67019394909442719744, 4959435223298761261056, 391795382640602139623424, 32910812141810579728367616, 2929062280621141595824717824
OFFSET
1,2
LINKS
FORMULA
a(n) = A008546(n)/4.
4*a(n) = (5*n-1)(!^5) = Product_{j=1..n} (5*j-1).
a(n) = (5*n)!/(5^n*n!*A008548(n)*2*A034323(n)*3*A034300(n)).
E.g.f.: (-1 + (1-5*x)^(-4/5))/4, a(0) = 0.
a(n) ~ sqrt(2*Pi) * 5/(4*Gamma(4/5)) * n^(13/10) * (5*n/e)^n * (1 + (241/300)/n + ...). - Joe Keane (jgk(AT)jgk.org), Nov 24 2001
D-finite with recurrence: a(n) +(-5*n+1)*a(n-1)=0. - R. J. Mathar, Feb 20 2020
Sum_{n>=1} 1/a(n) = 4*(e/5)^(1/5)*(Gamma(4/5) - Gamma(4/5, 1/5)). - Amiram Eldar, Dec 19 2022
MAPLE
a:= n-> mul(5*k-1, k=1..n)/4: seq(a(n), n=1..20); # G. C. Greubel, Aug 23 2019
MATHEMATICA
Table[-5^(n+1)*Pochhammer[-1/5, n+1]/4, {n, 20}] (* G. C. Greubel, Aug 23 2019 *)
PROG
(PARI) a(n) = prod(k=1, n, 5*k-1)/4;
vector(20, n, a(n)) \\ G. C. Greubel, Aug 23 2019
(Magma) [&*[5*k-1: k in [1..n]]/4: n in [1..20]]; // G. C. Greubel, Aug 23 2019
(Sage) [-5^(n+1)*rising_factorial(-1/5, n+1)/4 for n in (1..20)] # G. C. Greubel, Aug 23 2019
(GAP) List([1..20], n-> Product([1..n], k-> 5*k-1)/4 ); # G. C. Greubel, Aug 23 2019
CROSSREFS
KEYWORD
easy,nonn
EXTENSIONS
Terms a(17) onward added by G. C. Greubel, Aug 23 2019
STATUS
approved