login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A065707 Bessel polynomial {y_n}'(-2). 3
0, 1, -9, 126, -2270, 49995, -1301139, 39066076, -1329148764, 50536328085, -2123542798685, 97722882268506, -4887863677728954, 264025383760041631, -15317578742680490535, 949914821498248213560, -62707584375936061905464, 4390358319593012839913001 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

REFERENCES

J. Riordan, Combinatorial Identities, Wiley, 1968, p. 77.

LINKS

G. C. Greubel, Table of n, a(n) for n = 0..360

Index entries for sequences related to Bessel functions or polynomials

FORMULA

From G. C. Greubel, Aug 14 2017: (Start)

a(n) = 2*n*(1/2)_{n}*(-4)^(n - 1)* hypergeometric1f1(1 - n, -2*n, -1).

E.g.f.: ((1 + 4*x)^(3/2) - 2*x*(1 + 4*x)^(1/2) - 1)* exp((sqrt(1 + 4*x) -1)/2)/(4*(1 + 4*x)^(3/2)). (End)

G.f.: (x/(1-x)^3)*hypergeometric2f0(2,3/2; - ; -4*x/(1-x)^2). - G. C. Greubel, Aug 16 2017

MATHEMATICA

Join[{0}, Table[2*n*Pochhammer[1/2, n]*(-4)^(n - 1)*Hypergeometric1F1[1 - n, -2*n, -1], {n, 1, 50}]] (* G. C. Greubel, Aug 14 2017 *)

PROG

(PARI) for(n=0, 50, print1(sum(k=0, n-1, (n+k+1)!/(2*(n-k-1)!*k!)), ", ")) \\ G. C. Greubel, Aug 14 2017

CROSSREFS

Cf. A001514, A065920, A065921, A065922, A065707, A006199.

Sequence in context: A246238 A234573 A306033 * A338077 A034301 A092651

Adjacent sequences:  A065704 A065705 A065706 * A065708 A065709 A065710

KEYWORD

sign

AUTHOR

N. J. A. Sloane, Dec 08 2001

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 28 01:29 EDT 2021. Contains 348305 sequences. (Running on oeis4.)