login
A051687
a(n) = (5*n+6)(!^5)/6, related to A008548 ((5*n+1)(!^5) quintic, or 5-factorials).
7
1, 11, 176, 3696, 96096, 2978976, 107243136, 4396968576, 202260554496, 10315288279296, 577656143640576, 35237024762075136, 2325643634296958976, 165120698035084087296, 12549173050666390634496
OFFSET
0,2
COMMENTS
Row m=6 of the array A(6; m,n) := ((5*n+m)(!^5))/m(!^5), m >= 0, n >= 0.
LINKS
FORMULA
a(n) = ((5*n+6)(!^5))/6(!^5).
E.g.f.: 1/(1-5*x)^(11/5).
MATHEMATICA
s=1; lst={s}; Do[s+=n*s; AppendTo[lst, s], {n, 10, 5!, 5}]; lst (* Vladimir Joseph Stephan Orlovsky, Nov 08 2008 *)
With[{nn = 30}, CoefficientList[Series[1/(1 - 5*x)^(11/5), {x, 0, nn}], x]*Range[0, nn]!] (* G. C. Greubel, Aug 15 2018 *)
PROG
(PARI) x='x+O('x^30); Vec(serlaplace(1/(1-5*x)^(11/5))) \\ G. C. Greubel, Aug 15 2018
(Magma) m:=30; R<x>:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!(1/(1-5*x)^(11/5))); [Factorial(n-1)*b[n]: n in [1..m]]; // G. C. Greubel, Aug 15 2018
CROSSREFS
Cf. A052562, A008548(n+1), A034323(n+1), A034300(n+1), A034301(n+1), A034325(n+1), A051687-A051691 (rows m=0..10).
Sequence in context: A027398 A305970 A081740 * A231916 A101791 A140034
KEYWORD
easy,nonn
STATUS
approved