|
|
A151590
|
|
Number of permutations of 3 indistinguishable copies of 1..n arranged in a circle with exactly 2 adjacent element pairs in decreasing order.
|
|
2
|
|
|
0, 12, 207, 1392, 7455, 36540, 171591, 785856, 3538215, 15727740, 69204927, 301988592, 1308621327, 5637142812, 24159189015, 103079212800, 438086661591, 1855425868956, 7834020344655, 32985348829680, 138538465095807, 580542139461372, 2427721674124647
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,2
|
|
LINKS
|
|
|
FORMULA
|
G.f.: 3*x^2*(4 + 25*x - 123*x^2 + 56*x^3 - 16*x^4) / ((1 - x)^3*(1 - 4*x)^2).
a(n) = 11*a(n-1) - 43*a(n-2) + 73*a(n-3) - 56*a(n-4) + 16*a(n-5) for n>6.
(End)
|
|
PROG
|
(PARI) a(n) = if(n <= 1, 0, n*(3*4^n/2 - 9*n)) \\ Andrew Howroyd, May 04 2020
(PARI) concat(0, Vec(3*x^2*(4 + 25*x - 123*x^2 + 56*x^3 - 16*x^4) / ((1 - x)^3*(1 - 4*x)^2) + O(x^40))) \\ Colin Barker, Jul 16 2020
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
|
|
EXTENSIONS
|
|
|
STATUS
|
approved
|
|
|
|