login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A108020 a(n) is the number whose binary representation is the concatenation of n strings of the four digits "1100". 5
0, 12, 204, 3276, 52428, 838860, 13421772, 214748364, 3435973836, 54975581388, 879609302220, 14073748835532, 225179981368524, 3602879701896396, 57646075230342348, 922337203685477580, 14757395258967641292, 236118324143482260684, 3777893186295716170956 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,2
COMMENTS
Numbers whose base-16 representation consists entirely of 12's; 12 times base-16 repunits. - Franklin T. Adams-Watters, Mar 29 2006
LINKS
FORMULA
a(n) = 12*(16^n - 1)/15. - Franklin T. Adams-Watters, Mar 29 2006
From Colin Barker, Dec 06 2015: (Start)
a(n) = 17*a(n-1) - 16*a(n-2) for n > 1.
G.f.: 12*x / ((1-x)*(1-16*x)).
(End)
a(n) = 4*A182512(n). - Jamie Simpson, Oct 25 2022
a(n) = 12*A131865(n-1) for n>0. - Hugo Pfoertner, Nov 01 2022
EXAMPLE
a(3) = 3276 because 3276 written in base 2 is the digit string "1100" written three times: 110011001100.
MATHEMATICA
Table[ FromDigits[ Flatten[ Table[{1, 1, 0, 0}, {i, n}]], 2], {n, 0, 16}] (* Robert G. Wilson v, Jun 01 2005 *)
Table[FromDigits[PadRight[{}, 4n, {1, 1, 0, 0}], 2], {n, 0, 20}] (* Harvey P. Dale, Aug 12 2012 *)
PROG
(PARI) concat(0, Vec(12*x/((1-x)*(1-16*x)) + O(x^100))) \\ Colin Barker, Dec 06 2015
(PARI) a(n)=12*(16^n - 1)/15 \\ Charles R Greathouse IV, Nov 01 2022
CROSSREFS
Sequence in context: A083932 A080316 A357568 * A097193 A051688 A198529
KEYWORD
easy,nonn
AUTHOR
Alexandre Wajnberg, May 31 2005
EXTENSIONS
More terms from Robert G. Wilson v, Jun 01 2005
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 16 03:06 EDT 2024. Contains 371696 sequences. (Running on oeis4.)