login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Expansion of psi(x^3)^2 / f(-x^2) in powers of x where psi(), f() are Ramanujan theta functions.
3

%I #17 Mar 12 2021 22:24:43

%S 1,0,1,2,2,2,4,4,6,8,9,12,16,18,22,28,33,40,50,58,70,84,98,116,138,

%T 160,188,222,256,298,348,400,463,536,614,706,812,926,1060,1212,1378,

%U 1568,1785,2022,2292,2598,2932,3312,3740,4208,4736,5328,5978,6708,7522,8416,9416

%N Expansion of psi(x^3)^2 / f(-x^2) in powers of x where psi(), f() are Ramanujan theta functions.

%C On page 63 of Watson 1936 is an equation with left side 2*rho(q) + omega(q) and the right side is 3 times the g.f. of this sequence. - _Michael Somos_, Jul 14 2015

%C Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

%D N. J. Fine, Basic Hypergeometric Series and Applications, Amer. Math. Soc., 1988; p. 50, Eq. (25.4).

%D George N. Watson, The final problem: an account of the mock theta functions, J. London Math. Soc., 11 (1936) 55-80.

%H G. C. Greubel, <a href="/A097196/b097196.txt">Table of n, a(n) for n = 0..1000</a>

%H Vaclav Kotesovec, <a href="http://arxiv.org/abs/1509.08708">A method of finding the asymptotics of q-series based on the convolution of generating functions</a>, arXiv:1509.08708 [math.CO], 2015-2016.

%H Michael Somos, <a href="/A010815/a010815.txt">Introduction to Ramanujan theta functions</a>

%H George N. Watson, <a href="http://jlms.oxfordjournals.org/content/s1-11/1/55.extract">The final problem: an account of the mock theta functions</a>, J. London Math. Soc., 11 (1936) 55-80.

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/RamanujanThetaFunctions.html">Ramanujan Theta Functions</a>

%F Expansion of q^(-2/3) * eta(x^6)^4 / (eta(x^2) * eta(x^3)^2) in powers of q. - _Michael Somos_, Jul 14 2015

%F G.f.: Product_{n >= 1} (1+q^(3*n))^4*(1-q^(3*n))^2/(1-q^(2*n)).

%F 3 * a(n) = A053253(n) + 2 * A053255(n). - _Michael Somos_, Jul 29 2015

%F a(n) ~ exp(Pi*sqrt(n/3)) / (12*sqrt(n)). - _Vaclav Kotesovec_, Oct 14 2015

%e G.f. = 1 + x^2 + 2*x^3 + 2*x^4 + 2*x^5 + 4*x^6 + 4*x^7 + 6*x^8 + 8*x^9 + ...

%e G.f. = q^2 + q^8 + 2*q^11 + 2*q^14 + 2*q^17 + 4*q^20 + 4*q^23 + 6*q^26 + ...

%t a[ n_] := SeriesCoefficient[ EllipticTheta[ 2, 0, x^(3/2)]^2 / (4 x^(3/4) QPochhammer[ x^2]), {x, 0, n}]; (* _Michael Somos_, Jul 14 2015 *)

%t nmax=60; CoefficientList[Series[Product[(1+x^(3*k))^4 * (1-x^(3*k))^2 / (1-x^(2*k)),{k,1,nmax}],{x,0,nmax}],x] (* _Vaclav Kotesovec_, Oct 14 2015 *)

%o (PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^6 + A)^4 / (eta(x^2 + A) * eta(x^3 + A)^2), n))}; /* _Michael Somos_, Jul 14 2015 */

%Y Cf. A053253, A053255.

%K nonn

%O 0,4

%A _N. J. A. Sloane_, Sep 17 2004