login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A361712
a(n) = Sum_{k = 0..n-1} binomial(n,k)^2*binomial(n+k,k)*binomial(n+k-1,k).
6
0, 1, 25, 649, 16921, 448751, 12160177, 336745053, 9513822745, 273585035755, 7988828082775, 236367018090017, 7072779699975601, 213701611408357567, 6511338458568750853, 199850727914988936149, 6173376842290368719385, 191776434791965521115235, 5987554996434696230487955
OFFSET
0,3
COMMENTS
Conjecture 1: the supercongruence a(p) == a(1) (mod p^5) holds for all primes p >= 7 (checked up to p = 199).
Conjecture 2: for r >= 2, the supercongruence a(p^r) == a(p^(r-1)) (mod p^(3*r+3) holds for all primes p >= 5.
Compare with the Apéry numbers A005259(n) = Sum_{k = 0..n} binomial(n,k)^2 * binomial(n+k,k)^2, which satisfy the weaker supercongruences A005259(p^r) == A005259(p^(r-1)) (mod p^(3*r)) for all primes p >= 5.
FORMULA
a(n) = (1/12)*(7*A005259(n) + A005259(n-1)) - (1/2)*binomial(2*n,n)^2.
a(n) ~ 2^(1/4)*(1 + sqrt(2))^(4*n+1)/(4*Pi^(3/2)*n^(3/2)).
a(n) = hypergeom([-n, -n, n, n + 1], [1, 1, 1], 1) - binomial(2*n, n)*binomial(2*n - 1, n) = A361878(n) - A361877(n). - Peter Luschny, Mar 27 2023
EXAMPLE
a(7) - a(1) = (2^2)*(7^5)*5009 == 0 (mod 7^5)
a(11) - a(1) = (2^5)*(11^5)*45864163 == 0 (mod 11^5)
a(7^2) - a(7) = (2*3)*(7^9)*377052719*240136524699189343838527* 17965610580703155723668147409587 == 0 (mod 7^9)
MAPLE
seq(add(binomial(n, k)^2*binomial(n+k, k)*binomial(n+k-1, k), k = 0..n-1), n = 0..25);
# Alternative:
A361712 := n -> hypergeom([-n, -n, n, n + 1], [1, 1, 1], 1) - binomial(2*n, n)*binomial(2*n-1, n): seq(simplify(A361712(n)), n = 0..18); # Peter Luschny, Mar 27 2023
MATHEMATICA
A361712[n_] := HypergeometricPFQ[{-n, -n, n, n+1}, {1, 1, 1}, 1] - Binomial[2*n, n]*Binomial[2*n-1, n]; Array[A361712, 20, 0] (* Paolo Xausa, Jul 10 2024 *)
KEYWORD
nonn,easy
AUTHOR
Peter Bala, Mar 21 2023
STATUS
approved