login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A361711
a(1) = 1 and a(n) = Sum_{k = 0..n-2} (-1)^k * binomial(n,k)^2 * binomial(n-2,k) for n >= 2.
2
1, 1, -8, 5, 126, -168, -2400, 4125, 50050, -98098, -1100736, 2339064, 25069968, -56279520, -585307008, 1367240589, 13919870250, -33510798750, -335813478000, 827780223270, 8194328596740, -20587404077760, -201822515032320, 515067876905400, 5009403008531376, -12953308371172848
OFFSET
1,3
COMMENTS
Conjecture: the supercongruence a(p^k) == a(p^(k-1)) (mod p^(3*k)) holds for all primes p >= 5 and positive integer k.
FORMULA
a(2*n) = (-1)^n * (1/6) * (2*n-3)/(2*n-1) * (3*n)!/n!^3 = (-1)^n * (1/6) * (2*n-3)/(2*n-1) * A006480(n) for n >= 1.
a(2*n+1) = (-1)^n * (3*n+1)/(2*n+1) * (3*n)!/n!^3 for n >= 1.
a(2*n+1) = A361710(2*n+1) = A361716(2*n+1).
a(n) = hypergeom([1 -n, -1 - n, -1 - n], [1, 1], 1).
P-recursive: n^2*(n-2)*(3*n^2-14*n+17)*a(n) = -6*(6*n^3-24*n^2+29*n-9)*a(n-1) - 3*(n-3)*(3*n-4)*(3*n-5)*(3*n^2-8*n+6)*a(n-2) with a(1) = a(2) = 1.
EXAMPLE
Examples of supercongruences:
a(11) - a(1) = - (11^3)*827 == 0 (mod 11^3);
a(13) - a(1) = (13^3)*11411 == 0 (mod 13^3);
a(23) - a(1) = -(23^3)*16587697463 == 0 (mod 23^3);
a(5^2) - a(5) = 2*(3^2)*(5^6)*7*6791*374681 == 0 (mod 5^6).
MAPLE
a := proc(n) option remember; if n = 1 then 1 elif n = 2 then 1 else ( -6*(6*n^3-24*n^2+29*n-9)*a(n-1) - 3*(n-3)*(3*n-4)*(3*n-5)*(3*n^2-8*n+6)*a(n-2) )/( n^2*(n-2)*(3*n^2-14*n+17) ) end if; end:
seq(a(n), n = 1..25);
PROG
(PARI) a(n) = if (n==1, 1, sum(k = 0, n-2, (-1)^k * binomial(n, k)^2 * binomial(n-2, k))); \\ Michel Marcus, Mar 26 2023
CROSSREFS
KEYWORD
sign,easy
AUTHOR
Peter Bala, Mar 21 2023
STATUS
approved