login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A361717
a(n) = Sum_{k = 0..n-1} binomial(n-1,k)^2*binomial(n+k,k).
6
0, 1, 4, 27, 216, 1875, 17088, 160867, 1549936, 15195843, 151017780, 1517232189, 15379549056, 157058738343, 1614039427224, 16676755365555, 173118505001952, 1804500885273123, 18877476988765404, 198120856336103017, 2085303730716475960
OFFSET
0,3
COMMENTS
Compare with the Apery numbers A005258(n) = Sum_{k = 0..n} binomial(n,k)^2* binomial(n+k,k).
Conjecture 1: the supercongruence a(p) == 0 (mod p^4) holds for all primes p >= 5 (checked up to p = 199).
Conjecture 2: the supercongruence a(p-1) == 1 - 2*p - p^2 (mod p^3) holds for all primes except p = 3 (checked up to p = 199).
LINKS
FORMULA
a(n) = hypergeom([1 + n, 1 - n, 1 - n], [1, 1], 1) for n >= 1.
P-recursive:
n*(n-1)*(5*n-7)*a(n) = (55*n^3-187*n^2+190*n-48)*a(n-1) + (n-1)*(n-3)*(5*n-2)* a(n-2) with a(0) = a(1) = 1.
a(n) ~ phi^(5*n - 3/2) / (2*5^(1/4)*Pi*n), where phi = A001622 is the golden ratio. - Vaclav Kotesovec, Mar 27 2023
a(n) = Sum_{k = 0..n-1} (-1)^(n+k+1) * binomial(n-1, k) * binomial(n+k-1, k) * binomial(n+k, k+1) = (-1)^(n+1) * n * hypergeom([n, n + 1, 1 - n], [1, 2], 1). - Peter Bala, Sep 08 2023
a(n) = Sum_{k = 0..n-1} (-1)^k * binomial(n-2, k) * binomial(2*n-2-k, n-1-k)^2. - Peter Bala, Oct 09 2024
EXAMPLE
a(5) = 3*(5^4); a(7) = (7^4)*67; a(11) = 3*(11^4)*34543; a(13) = (3^3)*(13^4)*203669.
MAPLE
seq( add(binomial(n-1, k)^2*binomial(n+k, k), k = 0..n), n = 0..20);
MATHEMATICA
A361717[n_]:=Sum[Binomial[n-1, k]^2Binomial[n+k, k], {k, 0, n-1}]; Array[A361717, 30, 0] (* Paolo Xausa, Oct 06 2023 *)
PROG
(PARI) a(n) = sum(k=0, n-1, binomial(n-1, k)^2*binomial(n+k, k)) \\ Winston de Greef, Mar 27 2023
KEYWORD
nonn,easy
AUTHOR
Peter Bala, Mar 26 2023
STATUS
approved