

A060542


a(n) = (1/6)*multinomial(3*n;n,n,n).


5



1, 15, 280, 5775, 126126, 2858856, 66512160, 1577585295, 37978905250, 925166131890, 22754499243840, 564121960420200, 14079683012144400, 353428777651788000, 8915829964229105280, 225890910734335847055, 5744976449471863238250, 146603287914300510042750
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,2


COMMENTS

Number of ways of dividing 3n labeled items into 3 unlabeled boxes with n items in each box.
From Antonio Campello (campello(AT)ime.unicamp.br), Nov 11 2009: (Start)
A060542(t) is the number of optimal [n,2,d] binary codes that correct at most t errors, i.e., having Hamming distance 2*t + 1 (achieved on length n = 3*t + 2). These codes are all isometric.
It is also the number of optimal [n,2,d] binary codes that detect 2*t + 1 errors, i.e., having Hamming distance 2t+2 (obtained by adding an overall parity check to the n = 3*t + 2 optimal codes). These codes are also all isometric.
For t = 0, we have the famous MDS, cyclic, simplex code {(000), (101), (110), (011)}. (End)
Also the number of distinct adjacency matrices of the complete tripartite graph K_{n,n,n}.  Eric W. Weisstein, Apr 21 2017


LINKS

Harry J. Smith, Table of n, a(n) for n = 1..100
Eric Weisstein's World of Mathematics, Adjacency Matrix
Eric Weisstein's World of Mathematics, Complete Tripartite Graph


FORMULA

a(n) = (3*n)!/((n!)^3*6) = a(n1)*3*(3*n  1)*(3*n  2)/n^2 = A060540(3,n) = A006480(n)/6.  corrected by Vaclav Kotesovec, Sep 23 2013
a(n) ~ 3^(3*n1/2)/(4*Pi*n).  Vaclav Kotesovec, Sep 23 2013


MATHEMATICA

Table[(3*n)!/(n!^3*6), {n, 1, 20}] (* Vaclav Kotesovec, Sep 23 2013 *)
Table[Multinomial[n, n, n], {n, 20}]/6 (* Eric W. Weisstein, Apr 21 2017 *)


PROG

(PARI) { a=1/6; for (n=1, 100, write("b060542.txt", n, " ", a=a*3*(3*n  1)*(3*n  2)/n^2); ) } \\ Harry J. Smith, Jul 06 2009


CROSSREFS

Row 3 of A060540.
Cf. A025035.
Sequence in context: A279976 A308835 A199096 * A095654 A279167 A249960
Adjacent sequences: A060539 A060540 A060541 * A060543 A060544 A060545


KEYWORD

nonn


AUTHOR

Henry Bottomley, Apr 02 2001


EXTENSIONS

Definition revised by N. J. A. Sloane, Feb 02 2009


STATUS

approved



