login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A249960
T(n,k)=Number of length n+5 0..k arrays with no six consecutive terms having the maximum of any two terms equal to the minimum of the remaining four terms
14
15, 285, 15, 2010, 505, 15, 8790, 5300, 897, 15, 28785, 31180, 14094, 1593, 15, 77595, 129095, 111746, 37584, 2825, 15, 181860, 422065, 585069, 402010, 100236, 4999, 15, 383580, 1164800, 2319123, 2662039, 1447334, 267004, 8823, 15, 745155, 2830080
OFFSET
1,1
COMMENTS
Table starts
.15...285.....2010......8790.......28785........77595........181860
.15...505.....5300.....31180......129095.......422065.......1164800
.15...897....14094....111746......585069......2319123.......7532380
.15..1593....37584....402010.....2662039.....12791191......48882360
.15..2825...100236...1447334....12123567.....70617807.....317518832
.15..4999...267004...5207128....55191061....389769865....2062131616
.15..8823...709814..18707320...251002319...2149795141...13385651492
.15.15918..1911823..67741331..1147421312..11899842997...87116453114
.15.28655..5149630.245362806..5246484791..65881899243..567055137628
.15.51435.13856525.888353351.23984087410.364700648588.3690747006754
LINKS
FORMULA
Empirical for column k:
k=1: a(n) = a(n-1)
k=2: [order 66]
Empirical for row n:
n=1: a(n) = n^6 + 3*n^5 + 5*n^4 + 5*n^3 + (3/2)*n^2 - (1/2)*n
n=2: [polynomial of degree 7]
n=3: [polynomial of degree 8]
n=4: [polynomial of degree 9]
n=5: [polynomial of degree 10]
n=6: [polynomial of degree 11]
n=7: [polynomial of degree 12]
EXAMPLE
Some solutions for n=3 k=4
..3....4....4....0....0....3....0....0....4....3....2....2....2....0....2....1
..3....1....0....3....3....0....1....0....1....1....4....1....0....4....4....4
..1....4....1....2....4....4....2....3....1....1....1....1....0....3....2....1
..1....1....4....4....4....1....4....1....2....4....3....4....1....1....1....4
..3....0....2....3....0....4....3....3....3....0....3....0....4....0....2....4
..4....0....2....1....3....2....3....4....4....0....3....0....4....4....1....3
..2....3....4....0....1....0....3....3....3....4....0....2....4....4....4....0
..3....2....1....3....4....4....1....0....3....4....0....2....3....2....2....3
CROSSREFS
Sequence in context: A060542 A095654 A279167 * A249961 A177074 A069405
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Nov 09 2014
STATUS
approved