login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A249961
Number of length 1+5 0..n arrays with no six consecutive terms having the maximum of any two terms equal to the minimum of the remaining four terms.
1
15, 285, 2010, 8790, 28785, 77595, 181860, 383580, 745155, 1355145, 2334750, 3845010, 6094725, 9349095, 13939080, 20271480, 28839735, 40235445, 55160610, 74440590, 99037785, 130066035, 168805740, 216719700, 275469675, 346933665
OFFSET
1,1
COMMENTS
Row 1 of A249960.
LINKS
FORMULA
Empirical: a(n) = n^6 + 3*n^5 + 5*n^4 + 5*n^3 + (3/2)*n^2 - (1/2)*n.
Conjectures from Colin Barker, Aug 21 2017: (Start)
G.f.: 15*x*(1 + x)^2*(1 + 10*x + x^2) / (1 - x)^7.
a(n) = 7*a(n-1) - 21*a(n-2) + 35*a(n-3) - 35*a(n-4) + 21*a(n-5) - 7*a(n-6) + a(n-7) for n>7.
(End)
EXAMPLE
Some solutions for n=6:
..1....0....3....4....2....2....3....4....3....1....0....4....4....1....0....0
..3....4....1....2....4....5....1....2....3....3....1....2....1....6....0....3
..3....5....3....5....3....5....3....0....6....5....0....4....6....4....3....4
..5....3....1....3....0....6....2....3....6....2....2....1....5....1....6....1
..0....2....3....5....4....5....3....1....0....5....4....1....1....3....1....6
..4....0....2....1....4....3....3....6....1....0....3....2....2....5....3....4
CROSSREFS
Sequence in context: A095654 A279167 A249960 * A177074 A069405 A125055
KEYWORD
nonn
AUTHOR
R. H. Hardin, Nov 09 2014
STATUS
approved