login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A060545
a(n) = binomial(n^2, n)/n.
9
1, 3, 28, 455, 10626, 324632, 12271512, 553270671, 28987537150, 1731030945644, 116068178638776, 8634941152058949, 705873715441872264, 62895036884524942320, 6067037854078498539696, 629921975126394617164575, 70043473196734767582082230
OFFSET
1,2
LINKS
FORMULA
a(n) = A060543(n, n) = A014062(n)/n.
a(n+1) = C(A005563(n), n) for n >= 0. - Fred Daniel Kline, Sep 27 2016
From Peter Bala, Oct 22 2023: (Start)
a(p^r) == 1 (mod p^(3+r)) for all positive integers r and all primes p >= 5 (apply Meštrović, Remark 17, p. 12).
Conjecture: a(2*p^r) == 4*p^r - 1 (mod p^(3+r)) for all positive integers r and all primes p >= 5. (End)
MAPLE
A060545:=n->binomial(n^2, n)/n: seq(A060545(n), n=1..20); # Wesley Ivan Hurt, Sep 28 2016
MATHEMATICA
Table[Binomial[n^2, n]/n, {n, 15}] (* Michael De Vlieger, Sep 28 2016 *)
PROG
(PARI) a(n) = binomial(n^2, n)/n; \\ Harry J. Smith, Jul 06 2009
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Henry Bottomley, Apr 02 2001
EXTENSIONS
More terms from Fred Daniel Kline, Sep 28 2016
STATUS
approved