OFFSET
1,1
LINKS
Harry J. Smith, Table of n, a(n) for n=1,...,500
André Barbé, Symmetric patterns in the cellular automaton that generates Pascal's triangle modulo 2, Discr. Appl. Math. 105 (2000), 1-38.
Index entries for linear recurrences with constant coefficients, signature (0,0,0,0,0,2).
FORMULA
a(n) = 2^{floor[(n+3)/6]+d(n)}, with d(n)=1 if n mod 6=1, else d(n)=0.
a(n) = a(n-2)a(n-3)/a(n-5), n>5.
Conjecture: a(n)=2*a(n-6) for n>1. G.f.: -x*(2*x^5+2*x^4+2*x^3+2*x^2+x+2) / (2*x^6-1). - Colin Barker, Aug 29 2013
Sum_{n>=1} 1/a(n) = 7. - Amiram Eldar, Dec 10 2022
MATHEMATICA
a[n_] := a[n] = a[n-2]*a[n-3]/a[n-5]; a[1] = a[3] = a[4] = a[5] = 2; a[2] = 1; Table[a[n], {n, 1, 63}] (* Jean-François Alcover, Dec 27 2011, after second formula *)
LinearRecurrence[{0, 0, 0, 0, 0, 2}, {2, 1, 2, 2, 2, 2}, 70] (* Harvey P. Dale, Sep 19 2016 *)
PROG
(PARI) a(n)=if(n<1, 0, 2^((n+3)\6+(n%6==1)))
(PARI) { for (n=1, 500, write("b060548.txt", n, " ", 2^((n + 3)\6 + (n%6==1))); ) } \\ Harry J. Smith, Jul 07 2009
CROSSREFS
KEYWORD
easy,nice,nonn
AUTHOR
André Barbé (Andre.Barbe(AT)esat.kuleuven.ac.be), Apr 02 2001
STATUS
approved