login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A146879
Minimal degree of X_1(n).
1
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 2, 2, 2, 4, 2, 5, 3, 4, 4, 7, 4, 5, 6, 6, 6, 11, 6, 12, 8, 10, 10, 12, 8, 18, 12, 14, 12
OFFSET
1,11
COMMENTS
a(n) is the least d>0 for which there exists a plane curve f(x,y)=0 of degree d in x or y which is birationally equivalent to the modular curve X_1(n). There exist infinitely many non-isomorphic elliptic curves defined over number fields of degree a(n) which contain a point of order n. a(n)=1 if and only if X_1(n) has genus 0 and these values of n represent the possible finite orders of a point on an elliptic curve over Q.
By Mazur's theorem, these are 1,2,3,4,5,6,7,8,9,10 and 12. a(n)=2 if and only if X_1(n) is elliptic or hyperelliptic, which occurs only for n=11,13,14,15,16 and 18 [Mestre 1981]. The lower bound a(17)>3 follows from [Parent 1999] and the upper bound a(17)<=4 appears (for example) in [Reichert 1986]. a(20)=3 since it cannot be 1 or 2 and an explicit example of degree 3 is known (see below).
From [Jeon-Kim-Schweizer 2006] it follows that this is the only case when a(n)=3. The results a(21)=4 and a(22)=4 then follow from explicit examples [Sutherland 2008]. a(24) is either 4 or 5 and a(n) is not 4 for any n other than 17, 21, 22, or 24 by the results of [Jeon-Kim-Park 2006]. a(23) must be 5, 6, or 7. See [Sutherland 2008] for these and other upper bounds for n <= 50.
For n = 23 to 40, a(n) has been computed by M. Derickx and M. van Hoeij. For n = 41 to 100, upper bounds for a(n) have been computed by M. van Hoeij (see link). - Mark van Hoeij, Apr 17 2012
LINKS
Daeyeol Jeon, Chang Heon Kim and Andreas Schweizer, On the torsion of elliptic curves over cubic number fields, Acta Arithmetica 113 (2004), pp. 291-301.
Mark van Hoeij, Upper bounds
J.-F. Mestre, Corps euclidiens, unités exceptionnelles et courbes elliptiques, J. Number Theory, vol. 13, 1981, pp. 123-137
Andrew V. Sutherland, Constructing elliptic curves with prescribed torsion over finite fields, preprint, arXiv:0811.0296 [math.NT], 2008-2012.
EXAMPLE
a(20)<=3 because y^3+(x^2+3)y^2+(x^3+4)y+2=0 is an explicit plane model for X_1(20) and a(20)=3 because it is not 1 or 2 (these are all known).
CROSSREFS
Cf. A029937.
Sequence in context: A025801 A060548 A140426 * A231577 A325590 A277210
KEYWORD
hard,more,nonn
AUTHOR
STATUS
approved