login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A140426
Number of multi-symmetric Steinhaus matrices of size n.
0
1, 1, 2, 1, 2, 2, 2, 2, 4, 2, 4, 4, 4, 4, 8, 4, 8, 8, 8, 8, 16, 8, 16, 16, 16, 16, 32, 16, 32, 32, 32, 32, 64, 32, 64, 64, 64, 64, 128, 64, 128, 128, 128, 128, 256, 128, 256, 256, 256, 256, 512, 256, 512, 512, 512, 512, 1024, 512, 1024, 1024, 1024, 1024, 2048, 1024, 2048, 2048, 2048, 2048, 4096, 2048
OFFSET
0,3
COMMENTS
Theorem 3.7, p. 9, of Chappelon.
LINKS
Jonathan Chappelon, Regular Steinhaus graphs of odd degree, arXiv:0806.2779 [math.CO], 2008-2009.
FORMULA
a(n) = 2^ceiling(n/6) for n even, 2^ceiling((n-3)/6) for n odd.
G.f.: ( -1-x-2*x^2-x^3-2*x^4-2*x^5 ) / ( -1+2*x^6 ). - R. J. Mathar, Jan 22 2011
a(n) = A060548(n-1) for n >= 2. - Georg Fischer, Nov 03 2018
MATHEMATICA
LinearRecurrence[{0, 0, 0, 0, 0, 2}, {1, 1, 2, 1, 2, 2}, 100] (* Jean-François Alcover, Sep 25 2019 *)
PROG
(PARI) Vec((1 + x + 2*x^2 + x^3 + 2*x^4 + 2*x^5)/(1 - 2*x^6) + O(x^80)) \\ Andrew Howroyd, Nov 03 2018
CROSSREFS
Cf. A060548.
Sequence in context: A351593 A025801 A060548 * A146879 A231577 A325590
KEYWORD
easy,nonn
AUTHOR
Jonathan Vos Post, Jun 18 2008
STATUS
approved