login
A060551
a(n) is the number of nonsymmetric patterns (no reflective, nor rotational symmetry) which may be formed by an equilateral triangular arrangement of closely packed black and white cells satisfying the local matching rule of Pascal's triangle modulo 2, where n is the number of cells in each edge of the arrangement. The matching rule is such that any elementary top-down triangle of three neighboring cells in the arrangement contains either one or three white cells.
1
0, 0, 0, 6, 12, 42, 84, 210, 420, 924, 1860, 3900, 7800, 15996, 31992, 64728, 129528, 260568, 521136, 1045464, 2090928, 4187952, 8376240, 16764720, 33529440, 67084080, 134168160, 268385376, 536772192, 1073642592, 2147285184, 4294769760, 8589539520, 17179472064
OFFSET
1,4
FORMULA
a(n) = 2^n - 3*2^ceiling(n/2) - 2^(floor(n/3)+(n mod 3)mod 2) + 3*2^(floor((n+3)/6) + d(n)), with d(n)=1 if n mod 6=1 else d(n)=0.
a(n) = A000079(n) - 3*A060546(n) - A060547(n) + 3*A060548(n).
a(n) = A000079(n) - 3*2^A008619(n-1) - 2^A008611(n-1) + 3*2^A008615(n+1), for n >= 1.
G.f.: -6*x^4*(2*x^6 + 2*x^5 - x^4 + 2*x^3 - x^2 - 1) / ((2*x-1)*(2*x^2-1)*(2*x^3-1)*(2*x^6-1)). - Colin Barker, Aug 29 2013
MATHEMATICA
LinearRecurrence[{2, 2, -2, -4, -4, 10, -4, -4, 4, 8, 8, -16}, {0, 0, 0, 6, 12, 42, 84, 210, 420, 924, 1860, 3900}, 40] (* Harvey P. Dale, Feb 01 2015 *)
PROG
(PARI) { for (n=1, 500, a=2^n-3*2^ceil(n/2)-2^(floor(n/3)+(n%3)%2)+3*2^(floor((n+3)/6)+(n%6==1)); write("b060551.txt", n, " ", a); ) } \\ Harry J. Smith, Jul 07 2009
KEYWORD
easy,nonn
AUTHOR
André Barbé (Andre.Barbe(AT)esat.kuleuven.ac.be), Apr 03 2001
EXTENSIONS
More terms from Colin Barker, Aug 29 2013
STATUS
approved