OFFSET
1,4
LINKS
Harry J. Smith, Table of n, a(n) for n=1..500
A. Barbé, Symmetric patterns in the cellular automaton that generates Pascal's triangle modulo 2, Discr. Appl. Math. 105(2000), 1-38.
Index entries for linear recurrences with constant coefficients, signature (2,2,-2,-4,-4,10,-4,-4,4,8,8,-16).
FORMULA
a(n) = 2^n - 3*2^ceiling(n/2) - 2^(floor(n/3)+(n mod 3)mod 2) + 3*2^(floor((n+3)/6) + d(n)), with d(n)=1 if n mod 6=1 else d(n)=0.
G.f.: -6*x^4*(2*x^6 + 2*x^5 - x^4 + 2*x^3 - x^2 - 1) / ((2*x-1)*(2*x^2-1)*(2*x^3-1)*(2*x^6-1)). - Colin Barker, Aug 29 2013
MATHEMATICA
LinearRecurrence[{2, 2, -2, -4, -4, 10, -4, -4, 4, 8, 8, -16}, {0, 0, 0, 6, 12, 42, 84, 210, 420, 924, 1860, 3900}, 40] (* Harvey P. Dale, Feb 01 2015 *)
PROG
(PARI) { for (n=1, 500, a=2^n-3*2^ceil(n/2)-2^(floor(n/3)+(n%3)%2)+3*2^(floor((n+3)/6)+(n%6==1)); write("b060551.txt", n, " ", a); ) } \\ Harry J. Smith, Jul 07 2009
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
André Barbé (Andre.Barbe(AT)esat.kuleuven.ac.be), Apr 03 2001
EXTENSIONS
More terms from Colin Barker, Aug 29 2013
STATUS
approved