login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A129113
Expansion of x^3 / (1 - x - 5*x^2 - x^3 + x^4).
1
0, 0, 0, 1, 1, 6, 12, 42, 107, 323, 888, 2568, 7224, 20629, 58429, 166230, 471780, 1340730, 3807431, 10816631, 30722736, 87272592, 247895472, 704164537, 2000191753, 5681637318, 16138865148, 45843078954, 130218850259
OFFSET
0,6
LINKS
Li Zhou et al., Tiling 4-Rowed Rectangles with Dominoes: Problem 11187, American Mathematical Monthly, vol. 114, no. 6, 2007 (pp. 554-556).
FORMULA
a(n) = a(n - 1) + 5*a(n - 2) + a(n - 3) - a(n - 4).
a(n) = ((-b + c - e - g + i)*(1 + s + k)^(n - 1) + ( b + d - f + h - j)*(1 - s + l)^(n - 1) + ( b - d + f - h + j)*(1 - s - l)^(n - 1) + (-b - c + e + g - i)*(1 + s - k)^(n - 1))/(5800*4^(n - 1)), with b = 100*s, c = 1015*k, d = 145*sqrt(10*(7 + s)), e = 245*sqrt(58*(7 + s)), f = 75*sqrt(290*(7 + s)), g = 1914*sqrt(119 + 22*s), h = 98*sqrt[(145*(119 + 22*s)), i = 382*sqrt(3451 + 638*s), j = 406*sqrt(595 + 110*s), k = sqrt(2*(7 + s)), l = sqrt(2*(7 - s)), s = sqrt(29). - Tim Monahan, Sep 09 2011; modified by Robert G. Wilson v, Sep 26 2011
MATHEMATICA
f[1] = f[2] = f[3] = 0; f[4] = 1; f[n_] := f[n] = f[n - 1] + 5f[n - 2] + f[n - 3] - f[n - 4]; Array[f, 29] (* or *) LinearRecurrence[{1, 5, 1, -1}, {0, 0, 0, 1}, 29] (* or *) gf = x^3/(1 - x - 5 x^2 - x^3 + x^4); CoefficientList[ Series[gf, {x, 0, 28}], x]
PROG
(PARI) concat(vector(3), Vec(x^3/(1-x-5*x^2-x^3+x^4) + O(x^30))) \\ Michel Marcus, Nov 19 2017
CROSSREFS
Cf. A005178.
Sequence in context: A048069 A152787 A060551 * A377119 A048025 A120471
KEYWORD
nonn,easy
AUTHOR
Roger L. Bagula, Jun 07 2007
STATUS
approved