login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A152787
Numbers k such that both k and k^2/2 are averages of twin prime pairs.
3
6, 12, 42, 72, 600, 642, 882, 2130, 2382, 2688, 3558, 3582, 4548, 6132, 7548, 8010, 9042, 13398, 13932, 15972, 17598, 19140, 21492, 26250, 26262, 34512, 38670, 39228, 39342, 48312, 49740, 52542, 53088, 53592, 55050, 55662, 56100, 56712, 65028, 65448, 65520
OFFSET
1,1
LINKS
FORMULA
A152786 INTERSECT A014574. - R. J. Mathar, Jan 08 2009
MATHEMATICA
lst={}; Do[p1=Prime[n]; p2=Prime[n+1]; If[p2-p1==2, e=(2*(p1+1))^(1/2); i=Floor[e]; If[e==i, If[PrimeQ[i-1]&&PrimeQ[i+1], AppendTo[lst, i]]]], {n, 10!}]; lst
Select[Mean/@Select[Partition[Prime[Range[10000]], 2, 1], #[[2]]-#[[1]] == 2&], And@@PrimeQ[#^2/2+{1, -1}]&](* Harvey P. Dale, May 12 2014 *)
PROG
(Magma) [2*k:k in [1..40000]| IsPrime(2*k-1) and IsPrime(2*k+1) and IsPrime(2*k^2 -1) and IsPrime(2*k^2 +1) ]; // Marius A. Burtea, Dec 31 2019
CROSSREFS
Sequence in context: A267309 A206039 A048069 * A060551 A129113 A377119
KEYWORD
nonn
AUTHOR
EXTENSIONS
Rephrased definition by R. J. Mathar, Jan 08 2009
More terms from Harvey P. Dale, May 12 2014
STATUS
approved