The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A206039 Values of the difference d for 5 primes in arithmetic progression with the minimal start sequence {5 + j*d}, j = 0 to 4. 15
 6, 12, 42, 48, 96, 126, 252, 426, 474, 594, 636, 804, 1218, 1314, 1428, 1566, 1728, 1896, 2106, 2574, 2694, 2898, 3162, 3366, 4332, 4368, 4716, 4914, 4926, 4962, 5472, 5586, 5796, 5838, 6048, 7446, 7572, 7818, 8034, 8958, 9168, 9204, 9714 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS The computations were done without any assumptions on the form of d. All terms are multiples of 6. - Zak Seidov, Jan 07 2014 Equivalently, integers d such that the largest possible arithmetic progression (AP) of primes with common difference d has exactly 5 elements (see example). These 5 elements are not necessarily consecutive primes. In fact, for each term d, there exists only one such AP of primes, and this one always starts with A342309(d) = 5, so this unique AP is (5, 5+d, 5+2d, 5+3d, 5+4d). - Bernard Schott, Jan 25 2023 LINKS Sameen Ahmed Khan, Table of n, a(n) for n = 1..10000 Diophante, A1880. NP en PA (prime numbers in arithmetic progression) (in French). Sameen Ahmed Khan, Primes in Geometric-Arithmetic Progression, arXiv preprint arXiv:1203.2083 [math.NT], 2012. - From N. J. A. Sloane, Sep 15 2012 Wikipedia, Primes in arithmetic progression. Index entries for sequences related to primes in arithmetic progressions. FORMULA m is a term iff A123556(m) = 3. - Bernard Schott, Jan 25 2023 EXAMPLE d = 12 then {5, 5 + 1*12, 5 + 2*12, 5 + 3*12, 5 + 4*12} = {5, 17, 29, 41, 53}, which is 5 primes in arithmetic progression. MAPLE filter := d -> isprime(5+d) and isprime(5+2*d) and isprime(5+3*d) and isprime(5+4*d) : select(filter, [\$(1 .. 10000)]); # Bernard Schott, Jan 25 2023 MATHEMATICA t={}; Do[If[PrimeQ[{5, 5 + d, 5 + 2*d, 5 + 3*d, 5 +4*d}] == {True, True, True, True, True}, AppendTo[t, d]], {d, 10000}]; t Select[Range[10000], AllTrue[5+#*Range[0, 4], PrimeQ]&] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, May 09 2015 *) CROSSREFS Cf. A040976, A123556, A206038, A206040, A206042, A206043, A206044, A206045, A342309. Largest AP of prime numbers with exactly k elements: A007921 (k=1), A359408 (k=2), A206037 (k=3), A359409 (k=4), this sequence (k=5), A359410 (k=6), A206041 (k=7), A360146 (k=10), A206045 (k=11). Sequence in context: A356970 A152786 A267309 * A048069 A152787 A060551 Adjacent sequences: A206036 A206037 A206038 * A206040 A206041 A206042 KEYWORD nonn AUTHOR Sameen Ahmed Khan, Feb 03 2012 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 5 14:53 EDT 2023. Contains 363136 sequences. (Running on oeis4.)