The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A152790 Triangle T, read by rows, where g.f. of row n of matrix power T^(2^n) = (2^(2n-1) + y)*y^(n-1) for n>0. 5
 1, 1, 1, -3, 2, 1, 84, -28, 4, 1, -12520, 3040, -240, 8, 1, 8233600, -1757824, 103168, -1984, 16, 1, -14411593728, 4551192576, -235382784, 3397632, -16128, 32, 1, -376752260382720, -32793120079872, 2419300630528, -30807851008, 110280704 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 0,4 LINKS FORMULA T(n,k) is divisible by 2^(k*(n-k)) for n>=k>=0. For matrix powers: [T^m](n,k)/2^(k*(n-k)) is an integer for all integer m and n>=k>=0. GENERATING A152795 FROM MATRIX POWERS of this triangle T: A152795(n,k) = [T^(2^(n+1))](n-k,0) / 2^((n-k)*(n-k-1)+n+1) for n>k; A152795(n,k) = [T^(2^(n+m))](n-k+m-1,m-1) / 2^((n-k+m-1)*(n-k+m-2) - (m-1)^2 + n+m) for m>0, n>k, with A152795(n,n)=1. EXAMPLE Triangle T begins: 1; 1,1; -3,2,1; 84,-28,4,1; -12520,3040,-240,8,1; 8233600,-1757824,103168,-1984,16,1; -14411593728,4551192576,-235382784,3397632,-16128,32,1; -376752260382720,-32793120079872,2419300630528,-30807851008,110280704,-130048,64,1; 2151855694060453888,-2984404225397620736,-70623685744001024,1261902860648448,-3987317719040,3554017280,-1044480,128,1; ... Illustrate: g.f. of row n of T^(2^n) = (2^(2n-1) + y)*y^(n-1) as follows. Matrix power T^(2^3) begins: 1; 8,1; 32,16,1; 0,0,32,1; <-- row 3 of T^(2^3), g.f.: (2^5 + y)*y^2 ... Matrix power T^(2^4) begins: 1; 16,1; 192,32,1; 1024,512,64,1; 0,0,0,128,1; <-- row 4 of T^(2^4), g.f.: (2^7 + y)*y^3 ... Matrix power T^(2^5) begins: 1; 32,1; 896,64,1; 22528,3072,128,1; 131072,65536,8192,256,1; 0,0,0,0,512,1; <-- row 5 of T^(2^5), g.f.: (2^9 + y)*y^4 ... Matrix power T^(2^6) begins: 1; 64,1; 3840,128,1; 258048,14336,256,1; 15466496,1441792,49152,512,1; 67108864,33554432,4194304,131072,1024,1; 0,0,0,0,0,2048,1; <-- row 6 of T^(2^6), g.f.: (2^11 + y)*y^5 ... Triangle U resulting from U(n,k) = T(n,k)/2^(k*(n-k)) begins: 1; 1,1; -3,1,1; 84,-7,1,1; -12520,380,-15,1,1; 8233600,-109864,1612,-31,1,1; -14411593728,142224768,-919464,6636,-63,1,1; ... demonstrating that 2^(k*(n-k)) divides T(n,k). ILLUSTRATE GENERATION OF TRIANGLE A152795. Matrix power T^(2^7) begins: 1; 128,1; 15872,256,1; 2416640,61440,512,1; 444071936,16515072,229376,1024,1; 68048388096,3959422976,92274688,786432,2048,1; 137438953472,68719476736,8589934592,268435456,2097152,4096,1; 0,0,0,0,0,0,8192,1; <-- g.f. of row 7 = (2^13 + y)*y^6 ... Now remove all factors of 2 from the first 6 rows to obtain: 1; 1, 1; 31, 1, 1; 295, 15, 1, 1; 847, 63, 7, 1, 1; 507, 59, 11, 3, 1, 1; 1, 1, 1, 1, 1, 1, 1. Transposing this resultant triangle about the antidiagonal yields the first 6 rows of triangle A152795: 1; 1, 1; 1, 1, 1; 1, 3, 1, 1; 1, 11, 7, 1, 1; 1, 59, 63, 15, 1, 1; 1, 507, 847, 295, 31, 1, 1. This process extracts the initial m-1 rows of triangle A152795 from the matrix power T^(2^m) for all m>1 -- a very pretty result! PROG (PARI) {T(n, k)=local(M, N); M=if(n==0, Mat(1), M=matrix(n, n, r, c, if(r>=c, T(r-1, c-1)))); for(j=1, n, N=matrix(#M+1, #M+1, r, c, if(r==c, 1, if(r>c, if(r<=#M, M[r, c], if(c==#M, 2^(c-1), 0))))); for(i=2, #N-1, N[ #N, #N-i]=-(N^(2^(#N-1)))[ #N, #N-i]/2^(#N-1)); M=N); M[n+1, k+1]} CROSSREFS Cf. columns: A152791, A152792, A152793; A152794. Cf. variants: A152285, A134049, A132870, A132875. Cf. related triangle: A152795. Sequence in context: A107727 A346743 A087041 * A247602 A201902 A239893 Adjacent sequences:  A152787 A152788 A152789 * A152791 A152792 A152793 KEYWORD sign,tabl AUTHOR Paul D. Hanna, Dec 18 2008, Dec 19 2008 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 21 14:16 EDT 2022. Contains 353909 sequences. (Running on oeis4.)