login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Expansion of x^3 / (1 - x - 5*x^2 - x^3 + x^4).
1

%I #30 Nov 19 2017 14:31:35

%S 0,0,0,1,1,6,12,42,107,323,888,2568,7224,20629,58429,166230,471780,

%T 1340730,3807431,10816631,30722736,87272592,247895472,704164537,

%U 2000191753,5681637318,16138865148,45843078954,130218850259

%N Expansion of x^3 / (1 - x - 5*x^2 - x^3 + x^4).

%H Li Zhou et al., <a href="https://www.jstor.org/stable/27642267">Tiling 4-Rowed Rectangles with Dominoes: Problem 11187</a>, American Mathematical Monthly, vol. 114, no. 6, 2007 (pp. 554-556).

%H <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (1,5,1,-1).

%F a(n) = a(n - 1) + 5*a(n - 2) + a(n - 3) - a(n - 4).

%F a(n) = ((-b + c - e - g + i)*(1 + s + k)^(n - 1) + ( b + d - f + h - j)*(1 - s + l)^(n - 1) + ( b - d + f - h + j)*(1 - s - l)^(n - 1) + (-b - c + e + g - i)*(1 + s - k)^(n - 1))/(5800*4^(n - 1)), with b = 100*s, c = 1015*k, d = 145*sqrt(10*(7 + s)), e = 245*sqrt(58*(7 + s)), f = 75*sqrt(290*(7 + s)), g = 1914*sqrt(119 + 22*s), h = 98*sqrt[(145*(119 + 22*s)), i = 382*sqrt(3451 + 638*s), j = 406*sqrt(595 + 110*s), k = sqrt(2*(7 + s)), l = sqrt(2*(7 - s)), s = sqrt(29). - _Tim Monahan_, Sep 09 2011; modified by _Robert G. Wilson v_, Sep 26 2011

%t f[1] = f[2] = f[3] = 0; f[4] = 1; f[n_] := f[n] = f[n - 1] + 5f[n - 2] + f[n - 3] - f[n - 4]; Array[f, 29] (* or *) LinearRecurrence[{1, 5, 1, -1}, {0, 0, 0, 1}, 29] (* or *) gf = x^3/(1 - x - 5 x^2 - x^3 + x^4); CoefficientList[ Series[gf, {x, 0, 28}], x]

%o (PARI) concat(vector(3), Vec(x^3/(1-x-5*x^2-x^3+x^4) + O(x^30))) \\ _Michel Marcus_, Nov 19 2017

%Y Cf. A005178.

%K nonn,easy

%O 0,6

%A _Roger L. Bagula_, Jun 07 2007