login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A129116
Multifactorial array: A(k,n) = k-tuple factorial of n, for positive n, read by ascending antidiagonals.
4
1, 1, 2, 1, 2, 6, 1, 2, 3, 24, 1, 2, 3, 8, 120, 1, 2, 3, 4, 15, 720, 1, 2, 3, 4, 10, 48, 5040, 1, 2, 3, 4, 5, 18, 105, 40320, 1, 2, 3, 4, 5, 12, 28, 384, 362880, 1, 2, 3, 4, 5, 6, 21, 80, 945, 3628800, 1, 2, 3, 4, 5, 6, 14, 32, 162, 3840, 39916800, 1, 2, 3, 4, 5, 6, 7, 24, 45, 280
OFFSET
1,3
COMMENTS
The term "Quintuple factorial numbers" is also used for the sequences A008546, A008548, A052562, A047055, A047056 which have a different definition. The definition given here is the one commonly used. This problem exists for the other rows as well. "n!2" = n!!, "n!3" = n!!!, "n!4" = n!!!!, etcetera. Main diagonal is A[n,n] = n!n = n.
Similar to A114423 (with rows and columns exchanged). - Georg Fischer, Nov 02 2021
LINKS
Eric Weisstein's World of Mathematics, Multifactorial.
FORMULA
A(k,n) = n!k.
A(k,n) = M(n,k) in A114423. - Georg Fischer, Nov 02 2021
EXAMPLE
Table begins:
k / A(k,n)
1.|.1.2.6.24.120.720.5040.40320.362880.3628800... = A000142.
2.|.1.2.3..8..15..48..105...384....945....3840... = A006882.
3.|.1.2.3..4..10..18...28....80....162.....280... = A007661.
4.|.1.2.3..4...5..12...21....32.....45.....120... = A007662.
5.|.1.2.3..4...5...6...14....24.....36......50... = A085157.
6.|.1.2.3..4...5...6....7....16.....27......40... = A085158.
MAPLE
A:= proc(k, n) option remember; if n >= 1 then n* A(k, n-k) elif n >= 1-k then 1 else 0 fi end: seq(seq(A(1+d-n, n), n=1..d), d=1..16); # Alois P. Heinz, Feb 02 2009
MATHEMATICA
A[k_, n_] := A[k, n] = If[n >= 1, n*A[k, n-k], If[n >= 1-k, 1, 0]]; Table[ A[1+d-n, n], {d, 1, 16}, {n, 1, d}] // Flatten (* Jean-François Alcover, May 27 2016, after Alois P. Heinz *)
CROSSREFS
Cf. A000142 (n!), A006882 (n!!), A007661 (n!!!), A007662(n!4), A085157 (n!5), A085158 (n!6), A114799 (n!7), A114800 (n!8), A114806 (n!9), A288327 (n!10).
Cf. A114423 (transposed).
Sequence in context: A178803 A292901 A083773 * A096179 A361834 A166350
KEYWORD
easy,nonn,tabl
AUTHOR
Jonathan Vos Post, May 24 2007
EXTENSIONS
Corrected and extended by Alois P. Heinz, Feb 02 2009
STATUS
approved