OFFSET
1,3
COMMENTS
The term "Quintuple factorial numbers" is also used for the sequences A008546, A008548, A052562, A047055, A047056 which have a different definition. The definition given here is the one commonly used. This problem exists for the other rows as well. "n!2" = n!!, "n!3" = n!!!, "n!4" = n!!!!, etcetera. Main diagonal is A[n,n] = n!n = n.
Similar to A114423 (with rows and columns exchanged). - Georg Fischer, Nov 02 2021
LINKS
Alois P. Heinz, Antidiagonals n = 1..141, flattened
Eric Weisstein's World of Mathematics, Multifactorial.
FORMULA
A(k,n) = n!k.
A(k,n) = M(n,k) in A114423. - Georg Fischer, Nov 02 2021
EXAMPLE
Table begins:
k / A(k,n)
1.|.1.2.6.24.120.720.5040.40320.362880.3628800... = A000142.
2.|.1.2.3..8..15..48..105...384....945....3840... = A006882.
3.|.1.2.3..4..10..18...28....80....162.....280... = A007661.
4.|.1.2.3..4...5..12...21....32.....45.....120... = A007662.
5.|.1.2.3..4...5...6...14....24.....36......50... = A085157.
6.|.1.2.3..4...5...6....7....16.....27......40... = A085158.
MAPLE
A:= proc(k, n) option remember; if n >= 1 then n* A(k, n-k) elif n >= 1-k then 1 else 0 fi end: seq(seq(A(1+d-n, n), n=1..d), d=1..16); # Alois P. Heinz, Feb 02 2009
MATHEMATICA
A[k_, n_] := A[k, n] = If[n >= 1, n*A[k, n-k], If[n >= 1-k, 1, 0]]; Table[ A[1+d-n, n], {d, 1, 16}, {n, 1, d}] // Flatten (* Jean-François Alcover, May 27 2016, after Alois P. Heinz *)
CROSSREFS
KEYWORD
AUTHOR
Jonathan Vos Post, May 24 2007
EXTENSIONS
Corrected and extended by Alois P. Heinz, Feb 02 2009
STATUS
approved