Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #23 Nov 02 2021 22:25:48
%S 1,1,2,1,2,6,1,2,3,24,1,2,3,8,120,1,2,3,4,15,720,1,2,3,4,10,48,5040,1,
%T 2,3,4,5,18,105,40320,1,2,3,4,5,12,28,384,362880,1,2,3,4,5,6,21,80,
%U 945,3628800,1,2,3,4,5,6,14,32,162,3840,39916800,1,2,3,4,5,6,7,24,45,280
%N Multifactorial array: A(k,n) = k-tuple factorial of n, for positive n, read by ascending antidiagonals.
%C The term "Quintuple factorial numbers" is also used for the sequences A008546, A008548, A052562, A047055, A047056 which have a different definition. The definition given here is the one commonly used. This problem exists for the other rows as well. "n!2" = n!!, "n!3" = n!!!, "n!4" = n!!!!, etcetera. Main diagonal is A[n,n] = n!n = n.
%C Similar to A114423 (with rows and columns exchanged). - _Georg Fischer_, Nov 02 2021
%H Alois P. Heinz, <a href="/A129116/b129116.txt">Antidiagonals n = 1..141, flattened</a>
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/Multifactorial.html">Multifactorial.</a>
%F A(k,n) = n!k.
%F A(k,n) = M(n,k) in A114423. - _Georg Fischer_, Nov 02 2021
%e Table begins:
%e k / A(k,n)
%e 1.|.1.2.6.24.120.720.5040.40320.362880.3628800... = A000142.
%e 2.|.1.2.3..8..15..48..105...384....945....3840... = A006882.
%e 3.|.1.2.3..4..10..18...28....80....162.....280... = A007661.
%e 4.|.1.2.3..4...5..12...21....32.....45.....120... = A007662.
%e 5.|.1.2.3..4...5...6...14....24.....36......50... = A085157.
%e 6.|.1.2.3..4...5...6....7....16.....27......40... = A085158.
%p A:= proc(k,n) option remember; if n >= 1 then n* A(k, n-k) elif n >= 1-k then 1 else 0 fi end: seq(seq(A(1+d-n, n), n=1..d), d=1..16); # _Alois P. Heinz_, Feb 02 2009
%t A[k_, n_] := A[k, n] = If[n >= 1, n*A[k, n-k], If[n >= 1-k, 1, 0]]; Table[ A[1+d-n, n], {d, 1, 16}, {n, 1, d}] // Flatten (* _Jean-François Alcover_, May 27 2016, after _Alois P. Heinz_ *)
%Y Cf. A000142 (n!), A006882 (n!!), A007661 (n!!!), A007662(n!4), A085157 (n!5), A085158 (n!6), A114799 (n!7), A114800 (n!8), A114806 (n!9), A288327 (n!10).
%Y Cf. A114423 (transposed).
%K easy,nonn,tabl
%O 1,3
%A _Jonathan Vos Post_, May 24 2007
%E Corrected and extended by _Alois P. Heinz_, Feb 02 2009