login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A361834
Square array T(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where T(n,k) = Sum_{j=0..n} (-1)^(n-j) * binomial(2*j,j) * binomial(k*j,n-j).
4
1, 1, 2, 1, 2, 6, 1, 2, 4, 20, 1, 2, 2, 8, 70, 1, 2, 0, -2, 16, 252, 1, 2, -2, -10, -14, 32, 924, 1, 2, -4, -16, -22, -32, 64, 3432, 1, 2, -6, -20, -10, 12, -30, 128, 12870, 1, 2, -8, -22, 20, 118, 174, 64, 256, 48620, 1, 2, -10, -22, 66, 242, 304, 344, 346, 512, 184756
OFFSET
0,3
FORMULA
G.f. of column k: 1/sqrt(1 - 4*x*(1-x)^k).
n*T(n,k) = 2 * Sum_{j=0..k} (-1)^j * binomial(k,j)*(2*n-1-j)*T(n-1-j,k) for n > k.
EXAMPLE
Square array begins:
1, 1, 1, 1, 1, 1, 1, ...
2, 2, 2, 2, 2, 2, 2, ...
6, 4, 2, 0, -2, -4, -6, ...
20, 8, -2, -10, -16, -20, -22, ...
70, 16, -14, -22, -10, 20, 66, ...
252, 32, -32, 12, 118, 242, 342, ...
924, 64, -30, 174, 304, 82, -678, ...
PROG
(PARI) T(n, k) = sum(j=0, n, (-1)^(n-j)*binomial(2*j, j)*binomial(k*j, n-j));
CROSSREFS
Columns k=0..4 give A000984, A000079, A361815, A361816, A361817.
Main diagonal gives A361835.
Cf. A361830.
Sequence in context: A083773 A129116 A096179 * A166350 A357124 A210227
KEYWORD
sign,tabl
AUTHOR
Seiichi Manyama, Mar 26 2023
STATUS
approved