login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A114423
Multifactorial array read by ascending antidiagonals.
1
1, 2, 1, 6, 2, 1, 24, 3, 2, 1, 120, 8, 3, 2, 1, 720, 15, 4, 3, 2, 1, 5040, 48, 10, 4, 3, 2, 1, 40320, 105, 18, 5, 4, 3, 2, 1, 362880, 384, 28, 12, 5, 4, 3, 2, 1, 3628800, 945, 80, 21, 6, 5, 4, 3, 2, 1, 39916800, 3840, 162, 32, 14, 6, 5, 4, 3, 2, 1
OFFSET
1,2
COMMENTS
The columns are n!, n!!, n!!!, ... n!k for n >= 1, k >= 1.
LINKS
Eric Weisstein's World of Mathematics, Multifactorial.
FORMULA
M(n,k) = n!k.
M(n,k) = A129116(k,n). - Georg Fischer, Nov 02 2021
EXAMPLE
Table M begins:
n / M(n,k)
1.|...1...1...1...1...1
2.|...2...2...2...2...2
3.|...6...3...3...3...3
4.|..24...8...4...4...4
5.|.120..15..10...5...5
6.|.720..48..18..12...6
MATHEMATICA
NFactorialM[n_, m_] := Block[{k = n, p = Max[1, n]},
While[k > m, k -= m; p *= k]; p];
Table[NFactorialM[n - m + 1, m], {n, 1, 11}, {m, 1, n}] // Flatten (* Jean-François Alcover, Aug 01 2021, after Robert G. Wilson v in A007662 *)
CROSSREFS
Cf. A000142 (n!), A006882 (n!!), A007661 (n!!!), A007662(n!4), A085157 (n!5), A085158 (n!6), A114799 (n!7), A114800 (n!8), A114806 (n!9), A288327 (n!10).
Cf. A129116 (transposed).
Sequence in context: A114283 A106187 A110135 * A335109 A179863 A069123
KEYWORD
easy,nonn,tabl
AUTHOR
Jonathan Vos Post, Feb 12 2006
STATUS
approved