login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A114421
Quintuple primorial n##### = n#5.
0
1, 2, 3, 5, 7, 11, 26, 51, 95, 161, 319, 806, 1887, 3895, 6923, 14993, 42718, 111333, 237595, 463841, 1064503, 3118414, 8795307, 19720385, 41281849, 103256791, 314959814, 905916621, 2110081195, 4499721541, 11668017383
OFFSET
0,2
COMMENTS
This is to quintuple factorial A085157 = n!!!!!, as double primorial A079078 = n## is to double factorial A006882 = n!! and as primorial A002110 = n# is to factorial A000142 = n!. There is an obvious generalization to multiprimorial. (n#5)*((n-1)#5)*((n-2)#5)*((n-3)#5)*((n-4)#5) = n#. n#5 is a k-almost prime for k = ceiling(n/5).
LINKS
Eric Weisstein's World of Mathematics, Primorial.
Eric Weisstein's World of Mathematics, Multifactorial.
FORMULA
a(n) = n##### = prime(n)*((n-5)#####) = Prod[i == n mod 5, to n] prime(i). Notationally, prime(0) = 1; (-n)##### = 0#### = 1.
EXAMPLE
n##### is also written n#5.
0#5 = p(0) = 1.
1#5 = p(1) = 2.
2#5 = p(2) = 3.
3#5 = p(3) = 5.
4#5 = p(4) = 7.
5#5 = p(5)p(0) = 11*1 = 11.
6#5 = p(6)p(1) = 13*2 = 26.
7#5 = p(7)p(2) = 17*3 = 51.
8#5 = p(8)p(3) = 19*5 = 95.
9#5 = p(9)p(4) = 23*7 = 161.
10#5 = p(10)p(5)p(0) = 29*11*1 = 319.
11#5 = p(11)p(6)p(1) = 31*13*2 = 806.
12#5 = 37*17*3 = 1887.
13#5 = 41*19*5 = 3895.
14#5 = 43*23*7 = 6923.
15#5 = 47*29*11*1 = 14993.
16#5 = 53*31*13*2 = 42718.
17#5 = 59*37*17*3 = 111333.
18#5 = 61*41*19*5 = 237595.
19#5 = 67*43*23*7 = 463841.
20#5 = 71*47*29*11*1 = 1064503.
21#5 = 73*53*31*13*2 = 3118414.
22#5 = 79*59*37*17*3 = 8795307.
23#5 = 83*61*41*19*5 = 19720385.
24#5 = 89*67*43*23*7 = 41281849.
25#5 = 97*71*47*29*11*1 = 103256791.
26#5 = 101*73*53*31*13*2 = 314959814.
27#5 = 103*79*59*37*17*3 = 905916621.
28#5 = 107*83*61*41*19*5 = 2110081195.
29#5 = 109*89*67*43*23*7 = 4499721541.
30#5 = 113*97*71*47*29*11*1 = 11668017383.
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Jonathan Vos Post, Feb 12 2006
STATUS
approved