login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A114424
Number of partitions of n such that the size of the tail below the Durfee square is equal to the size of the tail to the right of the Durfee square.
1
1, 0, 1, 1, 1, 1, 1, 4, 2, 4, 2, 9, 5, 9, 10, 17, 17, 17, 26, 29, 50, 34, 65, 61, 102, 72, 146, 130, 201, 170, 266, 289, 387, 388, 491, 611, 677, 811, 899, 1260, 1225, 1630, 1619, 2355, 2270, 3086, 2970, 4361, 4147, 5524, 5555, 7625, 7609, 9681, 10202, 13085
OFFSET
1,8
REFERENCES
G. E. Andrews, The Theory of Partitions, Addison-Wesley, 1976 (pp. 27-28).
G. E. Andrews and K. Eriksson, Integer Partitions, Cambridge Univ. Press, 2004 (pp. 75-78).
LINKS
FORMULA
a(n) = coefficient of (t^0)(z^n) in G(t,1/t,z), where G(t,s,z)=sum(z^(k^2)/product((1-(tz)^j)(1-(sz)^j),j=1..k),k=1..infinity) is the trivariate g.f. according to partition size (z), size of the tail below the Durfee square (t) and size of the tail to the right of the Durfee square (s).
EXAMPLE
a(9) = 2 because we have [5,1,1,1,1] with both tails of size 4 and [3,3,3] with both tails of size 0.
MAPLE
g:=sum(z^(k^2)/product((1-(t*z)^j)*(1-(z/t)^j), j=1..k), k=1..10): gser:=simplify(series(g, z=0, 65)): 1, seq(coeff(numer(coeff(gser, z^n)), t^(n-1)), n=2..60);
# second Maple program:
b:= proc(n, i) option remember;
`if`(n=0, 1, `if`(i<1, 0, b(n, i-1)+`if`(i>n, 0, b(n-i, i))))
end:
a:= proc(n) local r; add(`if`(irem(n-d^2, 2, 'r')=1, 0,
b(r, d)^2), d=1..floor(sqrt(n)))
end:
seq(a(n), n=1..70); # Alois P. Heinz, Apr 09 2012
MATHEMATICA
b[n_, i_] := b[n, i] = If[n==0, 1, If[i<1, 0, b[n, i-1] + If[i>n, 0, b[n-i, i]]]]; a[n_] := Sum[If[{q, r} = QuotientRemainder[n-d^2, 2]; r==1, 0, b[q, d]^2], {d, 1, Floor[Sqrt[n]]}]; Table[a[n], {n, 1, 70}] (* Jean-François Alcover, Mar 31 2015, after Alois P. Heinz *)
CROSSREFS
Sequence in context: A278527 A010474 A064887 * A246819 A056158 A330093
KEYWORD
nonn
AUTHOR
Emeric Deutsch, Feb 12 2006
STATUS
approved