OFFSET
1,8
REFERENCES
G. E. Andrews, The Theory of Partitions, Addison-Wesley, 1976 (pp. 27-28).
G. E. Andrews and K. Eriksson, Integer Partitions, Cambridge Univ. Press, 2004 (pp. 75-78).
LINKS
Alois P. Heinz, Table of n, a(n) for n = 1..1000
FORMULA
a(n) = coefficient of (t^0)(z^n) in G(t,1/t,z), where G(t,s,z)=sum(z^(k^2)/product((1-(tz)^j)(1-(sz)^j),j=1..k),k=1..infinity) is the trivariate g.f. according to partition size (z), size of the tail below the Durfee square (t) and size of the tail to the right of the Durfee square (s).
EXAMPLE
a(9) = 2 because we have [5,1,1,1,1] with both tails of size 4 and [3,3,3] with both tails of size 0.
MAPLE
g:=sum(z^(k^2)/product((1-(t*z)^j)*(1-(z/t)^j), j=1..k), k=1..10): gser:=simplify(series(g, z=0, 65)): 1, seq(coeff(numer(coeff(gser, z^n)), t^(n-1)), n=2..60);
# second Maple program:
b:= proc(n, i) option remember;
`if`(n=0, 1, `if`(i<1, 0, b(n, i-1)+`if`(i>n, 0, b(n-i, i))))
end:
a:= proc(n) local r; add(`if`(irem(n-d^2, 2, 'r')=1, 0,
b(r, d)^2), d=1..floor(sqrt(n)))
end:
seq(a(n), n=1..70); # Alois P. Heinz, Apr 09 2012
MATHEMATICA
b[n_, i_] := b[n, i] = If[n==0, 1, If[i<1, 0, b[n, i-1] + If[i>n, 0, b[n-i, i]]]]; a[n_] := Sum[If[{q, r} = QuotientRemainder[n-d^2, 2]; r==1, 0, b[q, d]^2], {d, 1, Floor[Sqrt[n]]}]; Table[a[n], {n, 1, 70}] (* Jean-François Alcover, Mar 31 2015, after Alois P. Heinz *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Emeric Deutsch, Feb 12 2006
STATUS
approved