login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A056158
Equivalent of the Kurepa hypothesis for left factorial.
2
-4, -2, -4, 2, -20, 86, -532, 3706, -29668, 266990, -2669924, 29369138, -352429684, 4581585862, -64142202100, 962133031466, -15394128503492, 261700184559326, -4710603322067908, 89501463119290210, -1790029262385804244
OFFSET
3,1
COMMENTS
For a prime p > 2 we have !p == -a(p) mod p, where the left factorial !n = Sum_{k=0..n-1} k! (A003422).
LINKS
Romeo Mestrovic, Variations of Kurepa's left factorial hypothesis, arXiv:1312.7037 [math.NT], 2013.
Romeo Mestrovic, The Kurepa-Vandermonde matrices arising from Kurepa's left factorial hypothesis, Filomat 29:10 (2015), 2207-2215; DOI 10.2298/FIL1510207M.
FORMULA
a(3) = -4, a(n) = -(n-3)*a(n-1) - 2*(n-1).
a(n) = 2*(-1)^(n-1)*(n-3)!*Sum_{k=0..n-3} frac((k+2)*(-1)^(k+1))*k!.
Conjecture: a(n) + (n-5)*a(n-1) + (-2*n+9)*a(n-2) + (n-5)*a(n-3) = 0. - R. J. Mathar, Jan 31 2014
a(n) ~ (-1)^n * 2 * exp(-1) * (n-3)!. - Vaclav Kotesovec, Jan 05 2019
G.f.: 2*x^2*(exp(-1+1/x) * Exponential-Integral((x-1)/x) + x/(x-1)). - G. C. Greubel, Mar 29 2019
MATHEMATICA
a[3] = -4; a[n_]:= -(n-3)*a[n-1] - 2*(n-1); Array[a, 30, 3] (* James Spahlinger, Feb 20 2016 *)
Drop[CoefficientList[Series[2*x^2*(Exp[1/x -1]*ExpIntegralEi[(x-1)/x] + x/(x-1)), {x, 0, 15}, Assumptions -> x > 0], x], 3] (* G. C. Greubel, Mar 29 2019 *)
PROG
(Magma) [n eq 3 select -4 else -(n-3)*Self(n-3)-2*(n-1): n in [3..30]]; // Vincenzo Librandi, Feb 22 2016
(PARI) m=30; v=concat([-4], vector(m-1)); for(n=2, m, v[n]=-(n-1)*v[n-1] -2*(n+1)); v \\ G. C. Greubel, Mar 29 2019
(Sage)
@CachedFunction
def Self(n):
if n == 3 : return -4
return -(n-3)*Self(n-1) - 2*(n-1)
[Self(n) for n in (3..30)] # G. C. Greubel, Mar 29 2019
CROSSREFS
Sequence in context: A064887 A114424 A246819 * A330093 A010316 A083954
KEYWORD
sign,easy
AUTHOR
EXTENSIONS
More terms from Larry Reeves (larryr(AT)acm.org), Oct 03 2000
STATUS
approved