OFFSET
1,1
COMMENTS
In this version, the numbers 10, 11, and 12 may be split up into individual digits, in contrast to A036342.
a(59) has 1325 digits.
LINKS
Michael S. Branicky, Table of n, a(n) for n = 1..58
Eric Angelini, Philip Guston's primes
Tiziano Mosconi, in reply to Carlos Rivera, Puzzle 19: Primes on a clock, primepuzzles.net, Aug 13 2001.
EXAMPLE
101 is a term here using the digits 1 and 0 from 10 and the first 1 of 11.
PROG
(Python)
import heapq
from sympy import isprime
from itertools import islice
def agen(): # generator of terms
digits = [1, 2, 3, 4, 5, 6, 7, 8, 9, 1, 0, 1, 1, 1, 2]
h = [(digits[i], i) for i in range(len(digits))]
found = set()
while True:
v, last = heapq.heappop(h)
if v not in found and isprime(v):
found.add(v)
yield v
nxt = (last+1)%len(digits)
heapq.heappush(h, (v*10+digits[nxt], nxt))
print(list(islice(agen(), 25)))
(PARI)
A373044_row(r)={my(d=concat([digits(i)|i<-[1..12]]), p); Set([p| s<-[1..#d], d[s]&& isprime(p=fromdigits([d[i%#d+1]| i<-[s-1..s+r-2]]))])}\\ r-digit-terms
CROSSREFS
KEYWORD
nonn,base
AUTHOR
Eric Angelini and Michael S. Branicky, May 20 2024
STATUS
approved