login
A373044
Prime concatenated analog clock numbers read clockwise. Version 2: hours > 9 are split in 2 digits.
2
2, 3, 5, 7, 11, 23, 67, 89, 101, 4567, 10111, 67891, 89101, 789101, 4567891, 23456789, 56789101, 1234567891, 45678910111, 12345678910111, 1112123456789101, 23456789101112123, 112123456789101112123, 891011121234567891011, 4567891011121234567891
OFFSET
1,1
COMMENTS
In this version, the numbers 10, 11, and 12 may be split up into individual digits, in contrast to A036342.
a(59) has 1325 digits.
LINKS
Michael S. Branicky, Table of n, a(n) for n = 1..58
Eric Angelini, Philip Guston's primes
Tiziano Mosconi, in reply to Carlos Rivera, Puzzle 19: Primes on a clock, primepuzzles.net, Aug 13 2001.
EXAMPLE
101 is a term here using the digits 1 and 0 from 10 and the first 1 of 11.
PROG
(Python)
import heapq
from sympy import isprime
from itertools import islice
def agen(): # generator of terms
digits = [1, 2, 3, 4, 5, 6, 7, 8, 9, 1, 0, 1, 1, 1, 2]
h = [(digits[i], i) for i in range(len(digits))]
found = set()
while True:
v, last = heapq.heappop(h)
if v not in found and isprime(v):
found.add(v)
yield v
nxt = (last+1)%len(digits)
heapq.heappush(h, (v*10+digits[nxt], nxt))
print(list(islice(agen(), 25)))
(PARI)
A373044_row(r)={my(d=concat([digits(i)|i<-[1..12]]), p); Set([p| s<-[1..#d], d[s]&& isprime(p=fromdigits([d[i%#d+1]| i<-[s-1..s+r-2]]))])}\\ r-digit-terms
A373044_upto_length(L)=concat([A373044_row(r)|r<-[1..L]]) \\ M. F. Hasler, May 21 2024
CROSSREFS
Sequence in context: A119660 A079148 A107367 * A036342 A114421 A167119
KEYWORD
nonn,base
AUTHOR
STATUS
approved