login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Prime concatenated analog clock numbers read clockwise. Version 2: hours > 9 are split in 2 digits.
2

%I #40 May 21 2024 11:13:59

%S 2,3,5,7,11,23,67,89,101,4567,10111,67891,89101,789101,4567891,

%T 23456789,56789101,1234567891,45678910111,12345678910111,

%U 1112123456789101,23456789101112123,112123456789101112123,891011121234567891011,4567891011121234567891

%N Prime concatenated analog clock numbers read clockwise. Version 2: hours > 9 are split in 2 digits.

%C In this version, the numbers 10, 11, and 12 may be split up into individual digits, in contrast to A036342.

%C a(59) has 1325 digits.

%H Michael S. Branicky, <a href="/A373044/b373044.txt">Table of n, a(n) for n = 1..58</a>

%H Eric Angelini, <a href="https://cinquantesignes.blogspot.com/2024/05/philip-gustons-primes.html">Philip Guston's primes</a>

%H Tiziano Mosconi, in reply to Carlos Rivera, <a href="https://www.primepuzzles.net/puzzles/puzz_019.htm">Puzzle 19: Primes on a clock</a>, primepuzzles.net, Aug 13 2001.

%e 101 is a term here using the digits 1 and 0 from 10 and the first 1 of 11.

%o (Python)

%o import heapq

%o from sympy import isprime

%o from itertools import islice

%o def agen(): # generator of terms

%o digits = [1, 2, 3, 4, 5, 6, 7, 8, 9, 1, 0, 1, 1, 1, 2]

%o h = [(digits[i], i) for i in range(len(digits))]

%o found = set()

%o while True:

%o v, last = heapq.heappop(h)

%o if v not in found and isprime(v):

%o found.add(v)

%o yield v

%o nxt = (last+1)%len(digits)

%o heapq.heappush(h, (v*10+digits[nxt], nxt))

%o print(list(islice(agen(), 25)))

%o (PARI)

%o A373044_row(r)={my(d=concat([digits(i)|i<-[1..12]]), p); Set([p| s<-[1..#d], d[s]&& isprime(p=fromdigits([d[i%#d+1]| i<-[s-1..s+r-2]]))])}\\ r-digit-terms

%o A373044_upto_length(L)=concat([A373044_row(r)|r<-[1..L]]) \\ _M. F. Hasler_, May 21 2024

%Y Cf. A036342, A373045.

%K nonn,base

%O 1,1

%A _Eric Angelini_ and _Michael S. Branicky_, May 20 2024