login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Multifactorial array read by ascending antidiagonals.
1

%I #22 Nov 02 2021 11:51:51

%S 1,2,1,6,2,1,24,3,2,1,120,8,3,2,1,720,15,4,3,2,1,5040,48,10,4,3,2,1,

%T 40320,105,18,5,4,3,2,1,362880,384,28,12,5,4,3,2,1,3628800,945,80,21,

%U 6,5,4,3,2,1,39916800,3840,162,32,14,6,5,4,3,2,1

%N Multifactorial array read by ascending antidiagonals.

%C The columns are n!, n!!, n!!!, ... n!k for n >= 1, k >= 1.

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/Multifactorial.html">Multifactorial.</a>

%F M(n,k) = n!k.

%F M(n,k) = A129116(k,n). - _Georg Fischer_, Nov 02 2021

%e Table M begins:

%e n / M(n,k)

%e 1.|...1...1...1...1...1

%e 2.|...2...2...2...2...2

%e 3.|...6...3...3...3...3

%e 4.|..24...8...4...4...4

%e 5.|.120..15..10...5...5

%e 6.|.720..48..18..12...6

%t NFactorialM[n_, m_] := Block[{k = n, p = Max[1, n]},

%t While[k > m, k -= m; p *= k]; p];

%t Table[NFactorialM[n - m + 1, m], {n, 1, 11}, {m, 1, n}] // Flatten (* _Jean-François Alcover_, Aug 01 2021, after _Robert G. Wilson v_ in A007662 *)

%Y Cf. A000142 (n!), A006882 (n!!), A007661 (n!!!), A007662(n!4), A085157 (n!5), A085158 (n!6), A114799 (n!7), A114800 (n!8), A114806 (n!9), A288327 (n!10).

%Y Cf. A129116 (transposed).

%K easy,nonn,tabl

%O 1,2

%A _Jonathan Vos Post_, Feb 12 2006