|
|
A096179
|
|
Triangle read by rows: T(n,k) is the smallest positive integer having at least k of the first n positive integers as divisors.
|
|
8
|
|
|
1, 1, 2, 1, 2, 6, 1, 2, 4, 12, 1, 2, 4, 12, 60, 1, 2, 4, 6, 12, 60, 1, 2, 4, 6, 12, 60, 420, 1, 2, 4, 6, 12, 24, 120, 840, 1, 2, 4, 6, 12, 24, 72, 360, 2520, 1, 2, 4, 6, 12, 24, 60, 120, 360, 2520, 1, 2, 4, 6, 12, 24, 60, 120, 360, 2520, 27720, 1, 2, 4, 6, 12, 12, 24, 60, 120, 360
(list;
table;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,3
|
|
LINKS
|
Table of n, a(n) for n=1..76.
Wikipedia, Table of divisors.
|
|
FORMULA
|
T(n,k) = min { lcm(x_1,...,x_k) ; 0 < x_1 < ... < x_k <= n }
|
|
EXAMPLE
|
Triangle begins:
1
1 2
1 2 6
1 2 4 12
1 2 4 12 60
1 2 4 6 12 60
|
|
MAPLE
|
with(combstruct):
a096179_row := proc(n) local k, L, l, R, LCM, comb;
R := NULL; LCM := ilcm(seq(i, i=[$1..n]));
for k from 1 to n-1 do
L := LCM;
comb := iterstructs(Combination(n), size=k):
while not finished(comb) do
l := nextstruct(comb);
L := min(L, ilcm(op(l)));
od;
R := R, L;
od;
R, LCM end; # Peter Luschny, Dec 06 2010
|
|
MATHEMATICA
|
(* Triangular *)
A096179[n_, k_]:=Min[LCM@@@Subsets[Range[n], {k}]];
A002024[n_]:=Floor[1/2+Sqrt[2*n]];
A002260[n_]:=n-Binomial[Floor[1/2+Sqrt[2*n]], 2];
(* Linear *)
A096179[n_]:=A096179[n]=A096179[A002024[n], A002260[n]];
(* Enrique Pérez Herrero_, Dec 08 2010 *)
|
|
PROG
|
(PARI) A096179(n, k)={ my(m=lcm(vector(k, i, i))); forvec(v=vector(k-1, i, [2, n]), m>lcm(v) & m=lcm(v), 2); m } \\ M. F. Hasler, Nov 30 2010
|
|
CROSSREFS
|
Main diagonal is A003418. Minimum in column k is A061799(k). See also A094348, A096180.
Sequence in context: A292901 A083773 A129116 * A361834 A166350 A357124
Adjacent sequences: A096176 A096177 A096178 * A096180 A096181 A096182
|
|
KEYWORD
|
nonn,tabl
|
|
AUTHOR
|
Matthew Vandermast, Jun 19 2004
|
|
STATUS
|
approved
|
|
|
|