login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A096179
Triangle read by rows: T(n,k) is the smallest positive integer having at least k of the first n positive integers as divisors.
8
1, 1, 2, 1, 2, 6, 1, 2, 4, 12, 1, 2, 4, 12, 60, 1, 2, 4, 6, 12, 60, 1, 2, 4, 6, 12, 60, 420, 1, 2, 4, 6, 12, 24, 120, 840, 1, 2, 4, 6, 12, 24, 72, 360, 2520, 1, 2, 4, 6, 12, 24, 60, 120, 360, 2520, 1, 2, 4, 6, 12, 24, 60, 120, 360, 2520, 27720, 1, 2, 4, 6, 12, 12, 24, 60, 120, 360
OFFSET
1,3
FORMULA
T(n,k) = min { lcm(x_1,...,x_k) ; 0 < x_1 < ... < x_k <= n }
EXAMPLE
Triangle begins:
1
1 2
1 2 6
1 2 4 12
1 2 4 12 60
1 2 4 6 12 60
MAPLE
with(combstruct):
a096179_row := proc(n) local k, L, l, R, LCM, comb;
R := NULL; LCM := ilcm(seq(i, i=[$1..n]));
for k from 1 to n-1 do
L := LCM;
comb := iterstructs(Combination(n), size=k):
while not finished(comb) do
l := nextstruct(comb);
L := min(L, ilcm(op(l)));
od;
R := R, L;
od;
R, LCM end; # Peter Luschny, Dec 06 2010
MATHEMATICA
(* Triangular *)
A096179[n_, k_]:=Min[LCM@@@Subsets[Range[n], {k}]];
A002024[n_]:=Floor[1/2+Sqrt[2*n]];
A002260[n_]:=n-Binomial[Floor[1/2+Sqrt[2*n]], 2];
(* Linear *)
(* Enrique Pérez Herrero_, Dec 08 2010 *)
PROG
(PARI) A096179(n, k)={ my(m=lcm(vector(k, i, i))); forvec(v=vector(k-1, i, [2, n]), m>lcm(v) & m=lcm(v), 2); m } \\ M. F. Hasler, Nov 30 2010
CROSSREFS
Main diagonal is A003418. Minimum in column k is A061799(k). See also A094348, A096180.
Sequence in context: A292901 A083773 A129116 * A361834 A166350 A357124
KEYWORD
nonn,tabl
AUTHOR
Matthew Vandermast, Jun 19 2004
STATUS
approved