

A178803


Write the factorial of each term in A036043(n).


5



1, 1, 2, 1, 2, 6, 1, 2, 2, 6, 24, 1, 2, 2, 6, 6, 24, 120, 1, 2, 2, 2, 6, 6, 6, 24, 24, 120, 720, 1, 2, 2, 2, 6, 6, 6, 6, 24, 24, 24, 120, 120, 720, 5040, 1, 2, 2, 2, 2, 6, 6, 6, 6, 6, 24, 24, 24, 24, 24, 120, 120, 120, 720, 720, 5040, 40320, 1, 2, 2, 2, 2, 6, 6, 6, 6, 6, 6, 6, 24, 24, 24, 24, 24
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,3


COMMENTS

Sequence A036043 measures the length of numeric partitions.


LINKS

Table of n, a(n) for n=1..83.


EXAMPLE

A036043 begins 1 1 2 1 2 3 1 2 2 3 4 1 2 2 3 3 4 5 ...
so this table begins 1 1 2 1 2 6 1 2 2 6 24 ...
1;
1, 2;
1, 2, 6;
1, 2, 2, 6, 24;
1, 2, 2, 6, 6, 24, 120;
1, 2, 2, 2, 6, 6, 6, 24, 24, 120, 720;
1, 2, 2, 2, 6, 6, 6, 6, 24, 24, 24, 120, 120, 720, 5040;
1, 2, 2, 2, 2, 6, 6, 6, 6, 6, 24, 24, 24, 24, 24, 120, 120, 120, 720, 720, 5040, 40320;


PROG

(SageMath)
def A178803_row(n):
return [factorial(len(p)) for k in (0..n) for p in Partitions(n, length=k)]
for n in (0..10): print(A178803_row(n)) # Peter Luschny, Nov 02 2019


CROSSREFS

Cf. A000041 (shape sequence), A000142 (factorials), A036043, A101880 (row sums).
Sequence in context: A144358 A049404 A159885 * A292901 A083773 A129116
Adjacent sequences: A178800 A178801 A178802 * A178804 A178805 A178806


KEYWORD

easy,nonn,tabf


AUTHOR

Alford Arnold, Jun 17 2010


STATUS

approved



