login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A060550
a(n) is the number of distinct patterns (modulo geometric D_3-operations) with no other than strict 120-degree rotational symmetry which can be formed by an equilateral triangular arrangement of closely packed black and white cells satisfying the local matching rule of Pascal's triangle modulo 2, where n is the number of cells in each edge of the arrangement.
2
0, 0, 0, 1, 0, 1, 2, 1, 2, 6, 2, 6, 12, 6, 12, 28, 12, 28, 56, 28, 56, 120, 56, 120, 240, 120, 240, 496, 240, 496, 992, 496, 992, 2016, 992, 2016, 4032, 2016, 4032, 8128, 4032, 8128, 16256, 8128, 16256, 32640, 16256, 32640, 65280, 32640
OFFSET
1,7
COMMENTS
The matching rule is such that any elementary top-down triangle of three neighboring cells in the arrangement contains either one or three white cells.
FORMULA
a(n) = 2^(floor(n/3) + (n mod 3) mod 2 - 1) - 2^(floor((n+3)/6) + d(n)-1), with d(n)=1 if n mod 6=1, otherwise d(n)=0.
a(n) = (A060547(n) - A060548(n))/2.
a(n) = 2^(A008611(n-1) - 1) + 2^(A008615(n+1) - 1), for n >= 1.
G.f.: x^4*(x^2 - x + 1)*(x^2 + x + 1) / ((2*x^3-1)*(2*x^6-1)). - Colin Barker, Aug 29 2013
PROG
(PARI) a(n) = { 2^(floor(n/3) + (n%3)%2 - 1) - 2^(floor((n + 3)/6) + (n%6==1) - 1) } \\ Harry J. Smith, Jul 07 2009
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
André Barbé (Andre.Barbe(AT)esat.kuleuven.ac.be), Apr 03 2001
STATUS
approved