OFFSET
1,5
LINKS
Harry J. Smith, Table of n, a(n) for n=1..500
A. Barbé, Symmetric patterns in the cellular automaton that generates Pascal's triangle modulo 2, Discr. Appl. Math. 105(2000), 1-38.
Index entries for linear recurrences with constant coefficients, signature (2,2,-2,-4,-4,10,-4,-4,4,8,8,-16).
FORMULA
a(n) = (2^(n-1) - 2^(floor(n/3) + (n mod 3)mod 2 - 1))/3 + 2^(floor((n+3)/6) + d(n) - 1) - 2^floor((n-1)/2), with d(n)=1 if n mod 6=1 else d(n)=0.
a(n) = (A000079(n-1) - 2^(A008611(n-1) - 1))/3 + 2^(A008615(n+1) - 1) - 2^(A008619(n-1) - 1), n >= 1.
From R. J. Mathar, Aug 03 2009: (Start)
a(n) = 2*a(n-1) + 2*a(n-2) - 2*a(n-3) - 4*a(n-4) - 4*a(n-5) + 10*a(n-6) - 4*a(n-7) - 4*a(n-8) + 4*a(n-9) + 8*a(n-10) + 8*a(n-11) - 16*a(n-12).
G.f.: -x^4*(-1 - x^2 - x^4 + 2*x^3 + 2*x^5 + 2*x^6)/((2*x-1)*(2*x^2-1)*(2*x^3-1)*(2*x^6-1)). (End)
PROG
(PARI) a(n) = { (2^(n-1)-2^(floor(n/3)+(n%3)%2-1))/3+2^(floor((n+3)/6)+(n%6==1)-1)-2^floor((n-1)/2) } \\ Harry J. Smith, Jul 07 2009
CROSSREFS
KEYWORD
easy,nonn,changed
AUTHOR
André Barbé (Andre.Barbe(AT)esat.kuleuven.ac.be), Apr 03 2001
STATUS
approved