Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #9 Sep 08 2022 08:45:14
%S 1,24,612,15912,417690,11027016,292215924,7764594552,206732329947,
%T 5512862131920,147193418922264,3934078651195056,105236603919467748,
%U 2817102935690367408,75458114348849127000,2022277464549156603600
%N Main diagonal of triangle A097190, in which the n-th row polynomial R_n(y) is formed from the initial (n+1) terms of g.f. A097191(y)^(n+1), where R_n(1/3) = 9^n for all n>=0.
%H G. C. Greubel, <a href="/A097192/b097192.txt">Table of n, a(n) for n = 0..695</a>
%F G.f.: A(x) = 1/(1-27*x)^(8/9).
%F a(n) = (n+1)*A097193(n).
%F Conjecture: n*a(n) +3*(1-9*n)*a(n-1) = 0. - _R. J. Mathar_, Nov 16 2012
%p seq(coeff(series(1/(1-27*x)^(8/9), x, n+1), x, n), n = 0 ..20); # _G. C. Greubel_, Sep 17 2019
%t CoefficientList[Series[(1-27*x)^(-8/9), {x,0,20}], x] (* _G. C. Greubel_, Sep 17 2019 *)
%o (PARI) a(n)=polcoeff(1/(1-27*x+x*O(x^n))^(8/9),n,x)
%o (Magma) R<x>:=PowerSeriesRing(Rationals(), 20); Coefficients(R!( 1/(1-27*x)^(8/9) )); // _G. C. Greubel_, Sep 17 2019
%o (Sage)
%o def A097192_list(prec):
%o P.<x> = PowerSeriesRing(QQ, prec)
%o return P(1/(1-27*x)^(8/9)).list()
%o A097192_list(20) # _G. C. Greubel_, Sep 17 2019
%Y Cf. A097190, A097191, A097193.
%K nonn
%O 0,2
%A _Paul D. Hanna_, Aug 03 2004