OFFSET
0,2
REFERENCES
M. Kauers and P. Paule, The Concrete Tetrahedron, Springer 2011, p. 23.
FORMULA
Recurrence: R(0) = 1 and R(n) = - Sum_{k=0..n-1} R(k)/(n-k+1)! for n>=1. Then a(n) = denominator(R(n)). - Peter Luschny, Jul 30 2015
EXAMPLE
1, -1/2, 1/12, 0, -1/720, 0, 1/30240, 0, -1/1209600, 0, 1/47900160, 0, -691/1307674368000, 0, 1/74724249600, 0, ...
MATHEMATICA
Denominator[ CoefficientList[ Series[x/(1 - E^-x), {x, 0, 26}], x]] (* Robert G. Wilson v, Dec 29 2016 *)
PROG
(Sage)
@cached_function
def R(n): return -sum(R(k)/factorial(n-k+1) for k in (0..n-1)) if n>0 else 1
print([R(n).denominator() for n in (0..31)]) # Peter Luschny, Jul 30 2015
CROSSREFS
KEYWORD
nonn,frac
AUTHOR
N. J. A. Sloane, Aug 01 2013
STATUS
approved