login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A227830
Denominators of coefficients in expansion of x/(exp(x)-1).
4
1, 2, 12, 1, 720, 1, 30240, 1, 1209600, 1, 47900160, 1, 1307674368000, 1, 74724249600, 1, 10670622842880000, 1, 5109094217170944000, 1, 802857662698291200000, 1, 14101100039391805440000, 1, 1693824136731743669452800000, 1, 186134520519971831808000000, 1, 37893265687455865519472640000000, 1, 759790291646040068357842010112000000, 1
OFFSET
0,2
REFERENCES
M. Kauers and P. Paule, The Concrete Tetrahedron, Springer 2011, p. 23.
FORMULA
Recurrence: R(0) = 1 and R(n) = - Sum_{k=0..n-1} R(k)/(n-k+1)! for n>=1. Then a(n) = denominator(R(n)). - Peter Luschny, Jul 30 2015
EXAMPLE
1, -1/2, 1/12, 0, -1/720, 0, 1/30240, 0, -1/1209600, 0, 1/47900160, 0, -691/1307674368000, 0, 1/74724249600, 0, ...
MATHEMATICA
Denominator[ CoefficientList[ Series[x/(1 - E^-x), {x, 0, 26}], x]] (* Robert G. Wilson v, Dec 29 2016 *)
PROG
(Sage)
@cached_function
def R(n): return -sum(R(k)/factorial(n-k+1) for k in (0..n-1)) if n>0 else 1
print([R(n).denominator() for n in (0..31)]) # Peter Luschny, Jul 30 2015
CROSSREFS
For numerators see A120082.
Sequence in context: A221075 A211798 A075180 * A299521 A167164 A277265
KEYWORD
nonn,frac
AUTHOR
N. J. A. Sloane, Aug 01 2013
STATUS
approved