login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A060054 Numerators of numbers appearing in the Euler-Maclaurin summation formula. 12
-1, 1, 0, -1, 0, 1, 0, -1, 0, 1, 0, -691, 0, 1, 0, -3617, 0, 43867, 0, -174611, 0, 77683, 0, -236364091, 0, 657931, 0, -3392780147, 0, 1723168255201, 0, -7709321041217, 0, 151628697551, 0, -26315271553053477373 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,12
COMMENTS
a(n+1) = numerator(-Zeta(-n)), n>=1, with Riemann's zeta function. a(1)=-1=-numerator(-Zeta(-0)). For denominators see A075180.
Comment from N. J. A. Sloane, Oct 15 2008: (Start)
It appears that essentially the same sequence of rational numbers arises when we expand 1/(exp(1/x)-1) for large x. Here is the result of applying Bruno Salvy's gdev Maple program (answering a question raised by Roger L. Bagula):
gdev(1/(exp(1/x)-1), x=infinity, 20);
x - 1/2 + (1/12)/x - (1/720)/x^3 + (1/30240)/x^5 - (1/1209600)/x^7 + (1/47900160)/x^9 - (691/1307674368000)/x^11 + (1/74724249600)/x^13 - (3617/10670622842880000)/x^15 + (43867/5109094217170944000)/x^17 - (174611/802857662698291200000)/x^19 + ... (End)
REFERENCES
M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, Tenth Printing, 1972, p. 16 (3.6.28), p. 806 (23.1.30), p. 886 (25.4.7).
LINKS
M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, Tenth Printing, 1972, p. 16 (3.6.28), p. 806 (23.1.30), p. 886 (25.4.7).
Zhanna Kuznetsova and Francesco Toppan, Classification of minimal Z_2 X Z_2-graded Lie (super)algebras and some applications, arXiv:2103.04385 [math-ph], 2021.
FORMULA
a(n) = numerator(b(n)) with b(1) = -1/2; b(2*k+1) = 0, k >= 1; b(2*k) = B(2*k)/(2*k)! (B(2*n) = B_{2n} Bernoulli numbers: numerators A000367, denominators A002445)
MATHEMATICA
a[m_] := Sum[(-2)^(-k-1) k! StirlingS2[m, k], {k, 0, m}]/(2^(m+1)-1); Table[Numerator[a[i]], {i, 0, 30}] (* Peter Luschny, Apr 29 2009 *)
PROG
(Maxima) a(n):=num((-1)^n*sum(binomial(n+k-1, n-1)*sum((j!*(-1)^(j)*binomial(k, j)*stirling1(n+j, j))/(n+j)!, j, 1, k), k, 1, n)); /* Vladimir Kruchinin, Feb 03 2013 */
(Haskell)
a060054 n = a060054_list !! n
a060054_list = -1 : map (numerator . sum) (tail $ zipWith (zipWith (%))
(zipWith (map . (*)) a000142_list a242179_tabf) a106831_tabf)
-- Reinhard Zumkeller, Jul 04 2014
CROSSREFS
Denominators of nonzero numbers give A060055.
Cf. A001067 (numerator of B(2*k)/(2*k)).
Cf. A075180.
Cf. also A120082/A227830.
Sequence in context: A115177 A263114 A214335 * A120084 A120082 A358625
KEYWORD
sign,frac,easy
AUTHOR
Wolfdieter Lang, Feb 16 2001
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified February 27 21:03 EST 2024. Contains 370378 sequences. (Running on oeis4.)