login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A176483
Triangle, read by rows, defined by T(n, k) = b(n) - b(k) - b(n-k) + 1, where b(n) = 5*b(n-1) - 4*b(n-2) + 3*b(n-3) - 2*b(n-4) - b(n-5) and b(0) = 0, b(1) = 1, b(2) = 5, b(3) = 21, b(4) = 88.
1
1, 1, 1, 1, 4, 1, 1, 16, 16, 1, 1, 67, 79, 67, 1, 1, 281, 344, 344, 281, 1, 1, 1176, 1453, 1504, 1453, 1176, 1, 1, 4921, 6093, 6358, 6358, 6093, 4921, 1, 1, 20594, 25511, 26671, 26885, 26671, 25511, 20594, 1, 1, 86185, 106775, 111680, 112789, 112789, 111680, 106775, 86185, 1
OFFSET
0,5
COMMENTS
Row sums are {1, 2, 6, 34, 215, 1252, 6764, 34746, 172439, 834860, 3967727, ...}.
LINKS
FORMULA
Let b(n) = 5*b(n-1) - 4*b(n-2) + 3*b(n-3) - 2*b(n-4) - b(n-5), with b(0) = 0, b(1) = 1, b(2) = 5, b(3) = 21, b(4) = 88, then T(n, k) = b(n) - b(k) - b(n-k) + 1.
EXAMPLE
Triangle begins as:
1;
1, 1;
1, 4, 1;
1, 16, 16, 1;
1, 67, 79, 67, 1;
1, 281, 344, 344, 281, 1;
1, 1176, 1453, 1504, 1453, 1176, 1;
1, 4921, 6093, 6358, 6358, 6093, 4921, 1;
1, 20594, 25511, 26671, 26885, 26671, 25511, 20594, 1;
1, 86185, 106775, 111680, 112789, 112789, 111680, 106775, 86185, 1;
...
T(3,2) = b(3) - b(2) - b(3 - 2) + 1 = 21 - 5 - 1 + 1 = 16 [b(1) = 1, b(2) = 5, b(3) = 21]. - Indranil Ghosh, Feb 17 2017
MATHEMATICA
b[0]:=0; b[1]:=1; b[2]:=5; b[3]:=21; b[4]:=88;
b[n_]:= 5*b[n-1] -4*b[n-2] +3*b[n-3] -2*b[n-4] -b[n-5];
T[n_, m_]:= b[n] -b[m] -b[n-m] +1;
Table[T[n, m], {n, 0, 10}, {m, 0, n}]//Flatten (* modified by G. C. Greubel, May 06 2019 *)
PROG
(PARI)
{b(n) = if(n==0, 0, if(n==1, 1, if(n==2, 5, if(n==3, 21, if(n==4, 88, 5*b(n-1) -4*b(n-2) +3*b(n-3) -2*b(n-4) -b(n-5))))))};
{T(n, k) = b(n) -b(k) -b(n-k) +1};
for(n=0, 10, for(k=0, n, print1(T(n, k), ", "))) \\ G. C. Greubel, May 06 2019
(Sage)
def b(n):
if (n==0): return 0
elif (n==1): return 1
elif (n==2): return 5
elif (n==3): return 21
elif (n==4): return 88
else: return 5*b(n-1) -4*b(n-2) +3*b(n-3) -2*b(n-4) -b(n-5)
def T(n, k): return b(n) - b(k) - b(n-k) + 1
[[T(n, k) for k in (0..n)] for n in (0..12)] # G. C. Greubel, May 06 2019
CROSSREFS
Cf. A095263.
Sequence in context: A008304 A203846 A118185 * A174639 A173814 A176467
KEYWORD
nonn,tabl
AUTHOR
Roger L. Bagula, Apr 18 2010
EXTENSIONS
Edited by G. C. Greubel, May 06 2019
STATUS
approved