login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A176481
Triangle, read by rows, defined by T(n, k) = b(n) - b(k) - b(n-k) + 2, where b(n) = A001333(n).
1
1, 1, 1, 1, 3, 1, 1, 5, 5, 1, 1, 11, 13, 11, 1, 1, 25, 33, 33, 25, 1, 1, 59, 81, 87, 81, 59, 1, 1, 141, 197, 217, 217, 197, 141, 1, 1, 339, 477, 531, 545, 531, 477, 339, 1, 1, 817, 1153, 1289, 1337, 1337, 1289, 1153, 817, 1, 1, 1971, 2785, 3119, 3249, 3283, 3249, 3119, 2785, 1971, 1
OFFSET
0,5
COMMENTS
Row sums are: {1, 2, 5, 12, 37, 118, 369, 1112, 3241, 9194, 25533, ...}.
LINKS
B. Adamczewski, Ch. Frougny, A. Siegel and W. Steiner, Rational numbers with purely periodic beta-expansion, arXiv:0907.0206 [math.NT], 2009-2010; Bull. Lond. Math. Soc. 42:3 (2010), pp. 538-552.
FORMULA
Let b(n) = ((1+sqrt(2))^n + (1-sqrt(2))^n)/2 = A001333(n), then T(n, k) = b(n) - b(k) - b(n-k) + 2.
EXAMPLE
Triangle begins as:
1;
1, 1;
1, 3, 1;
1, 5, 5, 1;
1, 11, 13, 11, 1;
1, 25, 33, 33, 25, 1;
1, 59, 81, 87, 81, 59, 1;
1, 141, 197, 217, 217, 197, 141, 1;
1, 339, 477, 531, 545, 531, 477, 339, 1;
1, 817, 1153, 1289, 1337, 1337, 1289, 1153, 817, 1;
1, 1971, 2785, 3119, 3249, 3283, 3249, 3119, 2785, 1971, 1;
MATHEMATICA
b[n_]:= LucasL[n, 2]/2; T[n_, k_]:= b[n] -b[k] -b[n-k] +2;
Table[T[n, k], {n, 0, 12}, {k, 0, n}]//Flatten (* modified by G. C. Greubel, May 06 2019 *)
PROG
(PARI)
{b(n) = round(((1+sqrt(2))^n + (1-sqrt(2))^n)/2)};
{T(n, k) = b(n) -b(k) -b(n-k) +2};
for(n=0, 10, for(k=0, n, print1(T(n, k), ", "))) \\ G. C. Greubel, May 06 2019
(Magma) b:= func< n| Round(((1+Sqrt(2))^n + (1-Sqrt(2))^n)/2) >; [[b(n)-b(k)-b(n-k)+2: k in [0..n]]: n in [0..10]]; // G. C. Greubel, May 06 2019
(Sage)
def b(m): return lucas_number2(m, 2, -1)/2
def T(n, k): return b(n) - b(k) - b(n-k) + 2
[[T(n, k) for k in (0..n)] for n in (0..12)] # G. C. Greubel, May 06 2019
CROSSREFS
Cf. A001333.
Sequence in context: A056152 A171229 A125690 * A108553 A176700 A300539
KEYWORD
nonn,tabl
AUTHOR
Roger L. Bagula, Apr 18 2010
EXTENSIONS
Edited by G. C. Greubel, May 06 2019
STATUS
approved