login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A176482
Triangle, read by rows, defined by T(n, k) = b(n) - b(k) - b(n-k) + 1 (see formula section for recurrence for b(n)).
1
1, 1, 1, 1, 3, 1, 1, 9, 9, 1, 1, 29, 35, 29, 1, 1, 94, 120, 120, 94, 1, 1, 304, 395, 415, 395, 304, 1, 1, 983, 1284, 1369, 1369, 1284, 983, 1, 1, 3179, 4159, 4454, 4519, 4454, 4159, 3179, 1, 1, 10281, 13457, 14431, 14706, 14706, 14431, 13457, 10281, 1
OFFSET
0,5
COMMENTS
Row sums are {1, 2, 5, 20, 95, 430, 1815, 7274, 28105, 105752, 390111, ...}.
LINKS
Indranil Ghosh, Rows 0..120, flattened
B. Adamczewski, Ch. Frougny, A. Siegel and W. Steiner, Rational numbers with purely periodic beta-expansion, Bull. Lond. Math. Soc. 42:3 (2010), pp. 538-552; also arXiv:0907.0206 [math.NT], 2009-2010.
FORMULA
With b(n) = 4*b(n-1) - 3*b(n-2) + 2*b(n-3) - b(n-4), with b(0) = 0, b(1) = 1, b(2) = 4 and b(3) = 13, then the triangle is generated by T(n, k) = b(n) - b(k) - b(n-k) + 1.
EXAMPLE
Triangle begins as:
1;
1, 1;
1, 3, 1;
1, 9, 9, 1;
1, 29, 35, 29, 1;
1, 94, 120, 120, 94, 1;
1, 304, 395, 415, 395, 304, 1;
1, 983, 1284, 1369, 1369, 1284, 983, 1;
1, 3179, 4159, 4454, 4519, 4454, 4159, 3179, 1;
1, 10281, 13457, 14431, 14706, 14706, 14431, 13457, 10281, 1;
1, 33249, 43527, 46697, 47651, 47861, 47651, 46697, 43527, 33249, 1;
...
T(4,3) = a(4) - a(3) - a(4 - 3) + 1 = 42 - 13 - 1 + 1 = 29. - Indranil Ghosh, Feb 18 2017
MATHEMATICA
b[0]:=0; b[1]:=1; b[2]:=4; b[3]=13; b[n_]:= b[n]= 4*b[n-1] -3*b[n-2] + 2*b[n-3] -b[n-4]; T[n_, m_]:=b[n]-b[m]-b[n-m]+1; Table[T[n, m], {n, 0, 12}, {m, 0, n}], {n, 0, 10}]//Flatten
PROG
(Python) # see Indranil Ghosh link
(PARI)
{b(n) = if(n==0, 0, if(n==1, 1, if(n==2, 4, if(n==3, 13, 4*b(n-1) -3*b(n-2) + 2*b(n-3) -b(n-4)))))};
{T(n, k) = b(n) -b(k) -b(n-k) +1};
for(n=0, 10, for(k=0, n, print1(T(n, k), ", "))) \\ G. C. Greubel, May 06 2019
(Sage)
def b(n):
if (n==0): return 0
elif (n==1): return 1
elif (n==2): return 4
elif (n==3): return 13
else: return 4*b(n-1) -3*b(n-2) +2*b(n-3) -b(n-4)
def T(n, k): return b(n) - b(k) - b(n-k) + 1
[[T(n, k) for k in (0..n)] for n in (0..12)] # G. C. Greubel, May 06 2019
CROSSREFS
Cf. A095263.
Sequence in context: A152655 A144493 A118180 * A045912 A290554 A267264
KEYWORD
nonn,tabl,easy
AUTHOR
Roger L. Bagula, Apr 18 2010
EXTENSIONS
Name and formula sections edited by Indranil Ghosh, Feb 18 2017
Edited by G. C. Greubel, May 06 2019
STATUS
approved