OFFSET
0,5
COMMENTS
Row sums are {1, 2, 5, 20, 95, 430, 1815, 7274, 28105, 105752, 390111, ...}.
LINKS
Indranil Ghosh, Rows 0..120, flattened
B. Adamczewski, Ch. Frougny, A. Siegel and W. Steiner, Rational numbers with purely periodic beta-expansion, Bull. Lond. Math. Soc. 42:3 (2010), pp. 538-552; also arXiv:0907.0206 [math.NT], 2009-2010.
Indranil Ghosh, Python Program to generate the b-file
Roger L. Bagula, Three methods to generate the sequence b(n)
FORMULA
With b(n) = 4*b(n-1) - 3*b(n-2) + 2*b(n-3) - b(n-4), with b(0) = 0, b(1) = 1, b(2) = 4 and b(3) = 13, then the triangle is generated by T(n, k) = b(n) - b(k) - b(n-k) + 1.
EXAMPLE
Triangle begins as:
1;
1, 1;
1, 3, 1;
1, 9, 9, 1;
1, 29, 35, 29, 1;
1, 94, 120, 120, 94, 1;
1, 304, 395, 415, 395, 304, 1;
1, 983, 1284, 1369, 1369, 1284, 983, 1;
1, 3179, 4159, 4454, 4519, 4454, 4159, 3179, 1;
1, 10281, 13457, 14431, 14706, 14706, 14431, 13457, 10281, 1;
1, 33249, 43527, 46697, 47651, 47861, 47651, 46697, 43527, 33249, 1;
...
T(4,3) = a(4) - a(3) - a(4 - 3) + 1 = 42 - 13 - 1 + 1 = 29. - Indranil Ghosh, Feb 18 2017
MATHEMATICA
b[0]:=0; b[1]:=1; b[2]:=4; b[3]=13; b[n_]:= b[n]= 4*b[n-1] -3*b[n-2] + 2*b[n-3] -b[n-4]; T[n_, m_]:=b[n]-b[m]-b[n-m]+1; Table[T[n, m], {n, 0, 12}, {m, 0, n}], {n, 0, 10}]//Flatten
PROG
(Python) # see Indranil Ghosh link
(PARI)
{b(n) = if(n==0, 0, if(n==1, 1, if(n==2, 4, if(n==3, 13, 4*b(n-1) -3*b(n-2) + 2*b(n-3) -b(n-4)))))};
{T(n, k) = b(n) -b(k) -b(n-k) +1};
for(n=0, 10, for(k=0, n, print1(T(n, k), ", "))) \\ G. C. Greubel, May 06 2019
(Sage)
def b(n):
if (n==0): return 0
elif (n==1): return 1
elif (n==2): return 4
elif (n==3): return 13
else: return 4*b(n-1) -3*b(n-2) +2*b(n-3) -b(n-4)
def T(n, k): return b(n) - b(k) - b(n-k) + 1
[[T(n, k) for k in (0..n)] for n in (0..12)] # G. C. Greubel, May 06 2019
CROSSREFS
KEYWORD
AUTHOR
Roger L. Bagula, Apr 18 2010
EXTENSIONS
Name and formula sections edited by Indranil Ghosh, Feb 18 2017
Edited by G. C. Greubel, May 06 2019
STATUS
approved