login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Triangle, read by rows, defined by T(n, k) = b(n) - b(k) - b(n-k) + 1 (see formula section for recurrence for b(n)).
1

%I #24 May 20 2021 08:19:01

%S 1,1,1,1,3,1,1,9,9,1,1,29,35,29,1,1,94,120,120,94,1,1,304,395,415,395,

%T 304,1,1,983,1284,1369,1369,1284,983,1,1,3179,4159,4454,4519,4454,

%U 4159,3179,1,1,10281,13457,14431,14706,14706,14431,13457,10281,1

%N Triangle, read by rows, defined by T(n, k) = b(n) - b(k) - b(n-k) + 1 (see formula section for recurrence for b(n)).

%C Row sums are {1, 2, 5, 20, 95, 430, 1815, 7274, 28105, 105752, 390111, ...}.

%H Indranil Ghosh, <a href="/A176482/b176482.txt">Rows 0..120, flattened</a>

%H B. Adamczewski, Ch. Frougny, A. Siegel and W. Steiner, <a href="http://arxiv.org/abs/0907.0206">Rational numbers with purely periodic beta-expansion</a>, Bull. Lond. Math. Soc. 42:3 (2010), pp. 538-552; also arXiv:0907.0206 [math.NT], 2009-2010.

%H Indranil Ghosh, <a href="/A176482/a176482.txt">Python Program to generate the b-file</a>

%H Roger L. Bagula, <a href="/A176482/a176482_1.txt">Three methods to generate the sequence b(n)</a>

%F With b(n) = 4*b(n-1) - 3*b(n-2) + 2*b(n-3) - b(n-4), with b(0) = 0, b(1) = 1, b(2) = 4 and b(3) = 13, then the triangle is generated by T(n, k) = b(n) - b(k) - b(n-k) + 1.

%e Triangle begins as:

%e 1;

%e 1, 1;

%e 1, 3, 1;

%e 1, 9, 9, 1;

%e 1, 29, 35, 29, 1;

%e 1, 94, 120, 120, 94, 1;

%e 1, 304, 395, 415, 395, 304, 1;

%e 1, 983, 1284, 1369, 1369, 1284, 983, 1;

%e 1, 3179, 4159, 4454, 4519, 4454, 4159, 3179, 1;

%e 1, 10281, 13457, 14431, 14706, 14706, 14431, 13457, 10281, 1;

%e 1, 33249, 43527, 46697, 47651, 47861, 47651, 46697, 43527, 33249, 1;

%e ...

%e T(4,3) = a(4) - a(3) - a(4 - 3) + 1 = 42 - 13 - 1 + 1 = 29. - _Indranil Ghosh_, Feb 18 2017

%t b[0]:=0; b[1]:=1; b[2]:=4; b[3]=13; b[n_]:= b[n]= 4*b[n-1] -3*b[n-2] + 2*b[n-3] -b[n-4]; T[n_, m_]:=b[n]-b[m]-b[n-m]+1; Table[T[n, m], {n,0,12}, {m,0,n}], {n, 0, 10}]//Flatten

%o (Python) # see Indranil Ghosh link

%o (PARI)

%o {b(n) = if(n==0, 0, if(n==1, 1, if(n==2, 4, if(n==3, 13, 4*b(n-1) -3*b(n-2) + 2*b(n-3) -b(n-4)))))};

%o {T(n,k) = b(n) -b(k) -b(n-k) +1};

%o for(n=0,10, for(k=0,n, print1(T(n,k), ", "))) \\ _G. C. Greubel_, May 06 2019

%o (Sage)

%o def b(n):

%o if (n==0): return 0

%o elif (n==1): return 1

%o elif (n==2): return 4

%o elif (n==3): return 13

%o else: return 4*b(n-1) -3*b(n-2) +2*b(n-3) -b(n-4)

%o def T(n, k): return b(n) - b(k) - b(n-k) + 1

%o [[T(n, k) for k in (0..n)] for n in (0..12)] # _G. C. Greubel_, May 06 2019

%Y Cf. A095263.

%K nonn,tabl,easy

%O 0,5

%A _Roger L. Bagula_, Apr 18 2010

%E Name and formula sections edited by _Indranil Ghosh_, Feb 18 2017

%E Edited by _G. C. Greubel_, May 06 2019