login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A176467
A symmetrical triangle:q=2;c(n,q)=Product[1 - q^i, {i, 1, n}];t(n,m,q)=A060187(n,m)-c(n,q)/(c(m,q)*c(n-m,q))+1
0
1, 1, 1, 1, 4, 1, 1, 17, 17, 1, 1, 62, 196, 62, 1, 1, 207, 1528, 1528, 207, 1, 1, 660, 9893, 22154, 9893, 660, 1, 1, 2053, 57991, 247913, 247913, 57991, 2053, 1, 1, 6298, 320818, 2388134, 4474228, 2388134, 320818, 6298, 1, 1, 19163, 1712906, 20919938
OFFSET
0,5
COMMENTS
Row sums are:
{1, 2, 6, 36, 322, 3472, 43262, 615916, 9904730, 177511112, 3486135606,...}.
FORMULA
q=2;
c(n,q)=Product[1 - q^i, {i, 1, n}];
t(n,m,q)=A060187(n,m)-c(n,q)/(c(m,q)*c(n-m,q))+1
EXAMPLE
{1},
{1, 1},
{1, 4, 1},
{1, 17, 17, 1},
{1, 62, 196, 62, 1},
{1, 207, 1528, 1528, 207, 1},
{1, 660, 9893, 22154, 9893, 660, 1},
{1, 2053, 57991, 247913, 247913, 57991, 2053, 1},
{1, 6298, 320818, 2388134, 4474228, 2388134, 320818, 6298, 1},
{1, 19163, 1712906, 20919938, 66103548, 66103548, 20919938, 1712906, 19163, 1},
{1, 58016, 8941891, 171953190, 853179296, 1417870818, 853179296, 171953190, 8941891, 58016, 1}
MATHEMATICA
(*A060187*);
p[x_, n_] = (1 - x)^(n + 1)*Sum[(2*k + 1)^n*x^k, {k, 0, Infinity}];
f[n_, m_] := CoefficientList[FullSimplify[ExpandAll[p[x, n]]], x][[m + 1]];
c[n_, q_] = Product[1 - q^i, {i, 1, n}];
t[n_, m_, q_] := f[n, m] - c[n, q]/(c[m, q]*c[n - m, q]) + 1;
Table[Flatten[Table[Table[t[n, m, q], {m, 0, n}], {n, 0, 10}]], {q, 2, 12}]
CROSSREFS
Sequence in context: A176483 A174639 A173814 * A034802 A177262 A203092
KEYWORD
nonn,tabl,uned
AUTHOR
Roger L. Bagula, Apr 18 2010
STATUS
approved