OFFSET
0,5
COMMENTS
Row sums = A088957.
T(n,0)= 1, the empty function.
T(n,n)= 1, the identity function.
T(n,n-1)= n^2 (apparently).
FORMULA
E.g.f.: exp(x)*exp(y T(x)) where T(x) is the e.g.f. for A000169.
EXAMPLE
T(2,1)= 4 because there are 4 such partial functions on {1,2}: 1->1, 2->2, 1->1 2->1, 1->2 2->2,
1
1 1
1 4 1
1 18 9 1
1 116 78 16 1
1 1060 810 220 25 1
1 12702 10335 3260 495 36 1
MATHEMATICA
nn = 8; t = Sum[n^(n - 1) x^n/n!, {n, 1, nn}];
f[list_] := Select[list, # > 0 &];
Map[f, Range[0, nn]! CoefficientList[ Series[Exp[x] Exp[y t], {x, 0, nn}], {x, y}]] // Flatten
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Geoffrey Critzer, Dec 29 2011
STATUS
approved