%I
%S 1,1,1,1,4,1,1,18,9,1,1,116,78,16,1,1,1060,810,220,25,1,1,12702,10335,
%T 3260,495,36,1,1,187810,158613,54740,9835,966,49,1,1,3296120,2854908,
%U 1046024,209510,24696,1708,64,1
%N Triangular array read by rows. T(n,k) is the number of partial functions on {1,2,...,n} that are endofunctions with no cycles of length > 1 that have exactly k components.
%C Row sums = A088957.
%C T(n,0)= 1, the empty function.
%C T(n,n)= 1, the identity function.
%C T(n,n1)= n^2 (apparently).
%F E.g.f.: exp(x)*exp(y T(x)) where T(x) is the e.g.f. for A000169.
%e T(2,1)= 4 because there are 4 such partial functions on {1,2}: 1>1, 2>2, 1>1 2>1, 1>2 2>2,
%e 1
%e 1 1
%e 1 4 1
%e 1 18 9 1
%e 1 116 78 16 1
%e 1 1060 810 220 25 1
%e 1 12702 10335 3260 495 36 1
%t nn = 8; t = Sum[n^(n  1) x^n/n!, {n, 1, nn}];
%t f[list_] := Select[list, # > 0 &];
%t Map[f, Range[0, nn]! CoefficientList[ Series[Exp[x] Exp[y t], {x, 0, nn}], {x, y}]] // Flatten
%Y Cf. A088956, A144289
%K nonn,tabl
%O 0,5
%A _Geoffrey Critzer_, Dec 29 2011
