login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A176468
A symmetrical triangle:q=3;c(n,q)=Product[1 - q^i, {i, 1, n}];t(n,m,q)=A060187(n,m)-c(n,q)/(c(m,q)*c(n-m,q))+1
0
1, 1, 1, 1, 3, 1, 1, 11, 11, 1, 1, 37, 101, 37, 1, 1, 117, 473, 473, 117, 1, 1, 359, -467, -10331, -467, 359, 1, 1, 1087, -38805, -666047, -666047, -38805, 1087, 1, 1, 3273, -564647, -22609991, -71238207, -22609991, -564647, 3273, 1, 1, 9833, -6313279
OFFSET
0,5
COMMENTS
Row sums are:
{1, 2, 5, 24, 177, 1182, -10545, -1407528, -117580935, -13535434518,
-2541110736213,...}.
FORMULA
q=3;
c(n,q)=Product[1 - q^i, {i, 1, n}];
t(n,m,q)=A060187(n,m)-c(n,q)/(c(m,q)*c(n-m,q))+1
EXAMPLE
{1},
{1, 1},
{1, 3, 1},
{1, 11, 11, 1},
{1, 37, 101, 37, 1},
{1, 117, 473, 473, 117, 1},
{1, 359, -467, -10331, -467, 359, 1},
{1, 1087, -38805, -666047, -666047, -38805, 1087, 1},
{1, 3273, -564647, -22609991, -71238207, -22609991, -564647, 3273, 1},
{1, 9833, -6313279, -656760847, -6104652967, -6104652967, -656760847, -6313279, 9833, 1},
{1, 29515, -63520279, -18148426855, -499870912759, -1504945075459, -499870912759, -18148426855, -63520279, 29515, 1}
MATHEMATICA
(*A060187*);
p[x_, n_] = (1 - x)^(n + 1)*Sum[(2*k + 1)^n*x^k, {k, 0, Infinity}];
f[n_, m_] := CoefficientList[FullSimplify[ExpandAll[p[x, n]]], x][[m + 1]];
c[n_, q_] = Product[1 - q^i, {i, 1, n}];
t[n_, m_, q_] := f[n, m] - c[n, q]/(c[m, q]*c[n - m, q]) + 1;
Table[Flatten[Table[Table[t[n, m, q], {m, 0, n}], {n, 0, 10}]], {q, 2, 12}]
CROSSREFS
Sequence in context: A223256 A013561 A348211 * A176421 A168552 A111473
KEYWORD
sign,tabl,uned
AUTHOR
Roger L. Bagula, Apr 18 2010
STATUS
approved